
The Jabber protocol in Cambridge

Tony Finch <fanf2@cam.ac.uk>

University of Cambridge Computing Service

1. Introduction

Jabber is the open standard instant messaging and presence protocol.

Instant messaging (IM) includes the ability to send short messages which pop up on the recipient’s screen,
one-to-one online chat, and (as an extension) group chat or chat rooms. It fits somewhere between email and the
phone in the way it is used.

Presence is an indication of whether you are on-line and how willing you are to talk. In the past a limited
form of online presence was available on timesharing systems with commands like ‘‘finger’’, but since people
have dispersed to workstations this functionality was lost.

These notes aim to provide a technical overview of the Jabber protocol with comments on how we plan to
deploy it in Cambridge.

The project originated in October when I was investigating the feasibility of a Jabber service in spare
time, inspired by my use of Jabber in collaboration with the IETF, and further motivated by Google Talk. This
investigation stalled when I found that I could not do realistic tests without making the project official, so I
wrote a proposal at the start of November. The proposal went through two revisions for the Computing Service
Senior Management Team and one for the Information Technology Syndicate. Compared to the proposal docu-
ments, these notes go into somewhat more detail about the technicalities.

Each section below examines some aspect of the Jabber protocol suite and discusses matters that are rele-
vant to a Cambridge deployment. In some cases I will mention differences between the original core Jabber pro-
tocols and the core protocols standardized by the IETF as XMPP; the context for these differences is discussed
in more detail in the section on standards.

2. Basic syntax

Jabber is based on XML streams. The protocol data units are ‘‘XML stanzas’’, which are complete XML
elements within the outermost <stream/> element. For example, the following abbreviated stream comprises
two stanzas: a <presence/> stanza and a <message/> stanza.

<stream> ... <presence> ... </presence> ... <message> ... </message> ... </stream>

Jabber gets a lot of basic functionality for free by using XML:

• The syntax of commands and escapes is provided by XML elements and entities.

• XML namespaces prevent extensions from clashing.

• The xml:lang attribute specifies the localization of text.

• Easy support for desirable payload types such as XHTML[1] and SOAP[2].

The latter example might be slightly surprising, but although Jabber is designed for IM, its basic protocol is gen-
erally useful and can provide better performance than HTTP whilst being considerably simpler than BEEP[3].

3. Topology and addressing

The topology of the global Jabber network is similar to that of Internet email, though somewhat simpli-
fied. This is illustrated by the diagram on the following page. Note that inter-domain communication is a fun-
damental part of Jabber: it is designed to be a global IM system rather than an ‘‘enterprise’’ IM system.

These notes were produced for the University of Cambridge Information Technology Syndicate Technical Committee
meeting held on the 31st January 2006.



-2-

server
cam.ac.uk

server
gmail.com

server
doc.ic.ac.uk

server
jabber.org

server
nesc.ac.uk

server-to-server
topology is a mesh

and connections are opened
and closed on demand

servers are
typically clusters

high-level architecture
similar to email

strong anti-spoofing
checks between servers

no multi-stage
relaying

client
tony.finch@gmail.com

/ Talk.v2736485

comms between clients
at different servers goes

client-to-server-to-server-to-client

direct client-to-client
connections may be used
for file transfer or voice

client
fanf2@cam.ac.uk

/ home
client

fanf2@cam.ac.uk
/ work

client
rmc28@cam.ac.uk

/ work

client-to-server
topology is a star

and connections persist
while user is online

the resource part of a full JID
disambiguates multiple connections

Furthermore, Jabber IDs look like email addresses, in the form ‘‘username@domain’’. It therefore makes
sense for us to set up our Jabber service so that our users’ JIDs are the same as their @cam email addresses, to
make their online identities as consistent as possible. This is similar to Google Talk’s use of their users’
@gmail.com email addresses as JIDs.

In most cases users only deal with these ‘‘bare JIDs’’. There are also ‘‘full JIDs’’ which have an extra
‘‘/resource’’ part. If a user has multiple concurrent connections, these will have separate resource parts, for
example ‘‘fanf2@cam.ac.uk/work’’ or ‘‘fanf2@cam.ac.uk/home’’. A one-shot message is typically
sent to a bare JID, and will be routed to the user’s highest priority connection; whereas an online chat is typi-
cally tied to a particular pair of connections by the use of full JIDs. These details are generally handled by client
software without exposing much complexity to the user.

JIDs are also used for Jabber entities other than users. For example, a server’s JID is just its domain.
Server JIDs may be used for service discovery, which allows any user to browse a server’s facilities, and they
may be used for some special server features, for example the server administrator can set the message of the
day by sending a message to ‘‘cam.ac.uk/motd’’.

3.1. Server components and multi-user chat

Advanced facilities are typically not part of the core server, but are implemented as ‘‘server components’’
that are addressed separately but which depend on the main server for communication with other Jabber entities.

A common example is the multi-user chat facility. (Compare @lists in the email world.) The MUC
component has a separate domain, for example ‘‘group.chat.cam.ac.uk’’, with chat rooms having names
like ‘‘room@group.chat .cam.ac.uk’’. A message to the room’s JID is sent to all its occupants. Each
person in a room has a nickname in that room, for example ‘‘room@group.chat.cam.ac.uk/nick’’, which
may be used for private messages between users in the room.



-3-

The specifications do not require a user’s nick to be related to their normal JID, and chat rooms may be
‘‘anonymous’’ meaning they do not allow occupants to find out each others’ normal JIDs (hence the need for a
private message function). We will probably want to restrict facilities like these in our multi-user chat service to
minimize the scope for fooling around and causing trouble.

Server components are also used for foreign protocol gateways, which are discussed below.

3.2. DNS matters

In a similar way to email’s MX records, Jabber uses the DNS to provide an indirection layer between JIDs
and the names of the hosts providing the service. This is based on SRV records, which are effectively a general-
ized form of MX record that can be used by any protocol. Whereas email only uses MX records for server-to-
server connections, Jabber has SRV records for server-to-server and also client-to-server connections; this sim-
plifies client configuration, especially in situations like ours where it is not appropriate to have a server with a
hostname of cam.ac.uk.

SRV records for c2s were introduced in XMPP and are not yet supported by all clients; older clients will
have to be explicitly told the host name chat.cam.ac.uk.

We do not yet have any SRV records in the main cam.ac.uk zone. The hostmaster team are currently
performing some compatibility tests and when these are complete we should be able to deploy the Jabber SRV
records. If there is a delay this will affect client autoconfiguration and communication with other Jabber servers.

4.1. Privacy and abuse

It is not possible for a Jabber user to find out anyone’s presence information without first ‘‘subscribing’’ to
it. This is a handshake procedure between the two users in which the target user is sent a subscription request
which they may approve or decline. The handshake is typically reciprocated so that in the end there is a bidirec-
tional presence subscription.

Your subscriptions are listed in your ‘‘roster’’ (aka ‘‘buddy list’’). This is typically the basis of the Jabber
user interface: a list of your buddies with indications of their online status.

XMPP added ‘‘privacy lists’’ to the basic Jabber roster. Privacy lists can be used to block unwanted com-
munication, including presence indications and subscription requests, as well as instant messages. Users may
set up multiple privacy lists which they can subsequently choose between depending on circumstances.

Because this is a new feature it is not yet supported by all software, but I will ensure that we at least have
server-side support for it, and it will have some bearing on which client software we choose to support.

We also need appropriate logging in order to deal with complaints. I anticipate that our privacy and abuse
policies will be similar to those for email, though we have not yet spent time to finalize them.

4.2. Authentication and Security

Jabber’s security features are built on TLS and SASL, the same protocols used in email. (Before XMPP
Jabber had its own authentication protocols instead of SASL but there is already good support for the replace-
ment.) We hav e a number of requirements for authentication in our deployment.

• We should not introduce a new password.

• Any web-based client must use Raven authentication.

• Rav en passwords must only be typed into Raven, so a native Jabber client must use some other password.

• Because of the similarity to email it makes sense to use Hermes passwords to authenticate native Jabber
clients.

This approach also has the advantage of requiring no additional user administration work. The Chat service can
simply use the results of the Hermes user admin scripts.

Some local customization of the Jabber server software will be required to support Raven authentication;
however it should be possible to do this in a reasonably modular and maintainable manner because of the exten-
sible framework provided by SASL.



-4-

5. Software

Because Jabber is an open standard with a lively community of users, there is a broad variety of software,
both open source and commercial, on the server and the client.

I hav e spent some time evaluating open-source servers in the course of running a Jabber server for my
own personal use. The best choice seems to be ejabberd[4]. When the project gets the go-ahead and when the
service infrastructure is ready, the first job will be to finalize this decision.

On the client side we intend to provide a web-based client, and to support at least one native client. At the
moment Psi[5] is looking like a good candidate, since it works on Linux, Mac OS, and Windows, and the devel-
opers are keen to support advanced features like privacy lists and telephony.

During the development phase of the project, the service will be available to early adopters, and we hope
to get feedback from them about which clients are preferable. We also have a project wiki[6] where users can
directly contribute to documentation, as an alternative to providing suggestions via email.

6. History and Standards

The Jabber open-source project started in early 1999, and by mid-2000 the basic protocols and features
were stable, and supported by multiple implementations. In 2001 the Jabber Software Foundation was estab-
lished to maintain the Jabber specifications through an open standards process. Extensions to the base Jabber
protocols are published[7] as ‘‘Jabber Enhancement Proposals’’, for example, JEP-45 specifies multi-user chat.

At the same time the IETF ‘‘Instant Messaging and Presence Protocol’’ working group was attempting to
specify their own IM&P protocol. They were not working from the basis of an already-established protocol, but
instead had three competing paper designs, and so failed to reach consensus. However they produced a require-
ments document and some abstract specifications for gatewaying between different IM&P protocols.

The Jabber community was in favour of getting official IETF blessing for their protocols from the early
days, but did not have sufficient momentum to carry this out until later. In 2002, they managed to form the
XMPP working group, which was chartered to adapt the Jabber protocols to conform to IETF requirements
including those produced by the IMPP working group. The XMPP working group completed its work in 2003,
and on the publications of its RFCs in 2004[8,9,10,11] it concluded successfully.

The main improvements between the old Jabber core protocol and XMPP are: better internationalization;
better security, through the consistent use of TLS and SASL; and privacy lists.

7. Other IM protocols

Since the early days, Jabber has supported gatewaying to other IM systems – which usually means closed
proprietary systems. These gateways are implemented as Jabber server components, named for example
msn.chat.cam.ac.uk, which act as clients from the point of view of the foreign network. A Jabber user
can register with the gateway, after which point their MSN buddies are incorporated into their Jabber roster and
they can exchange messages transparently.

Because the foreign networks are closed, this gatewaying is not two-way: MSN users can only communi-
cate with Jabber users who are registered with the gateway, and they cannot join Jabber chat rooms. The other
disadvantage is that Jabber users must trust the gateway administrator with their foreign network login creden-
tials.

An alternative is to use a multi-protocol IM client such as Gaim[12] which implements the foreign proto-
col clients and the roster merging in the same program as the Jabber client.

We intend to provide server-side gateways to the main proprietary IM networks: AIM, MSN, and Yahoo!
Note that Google Talk is part of the Jabber network so our users will be able to communicate with Google Talk
users with no problems.

8. Telephony

The other protocol worth discussing is SIP, the IETF’s voice-over-IP protocol. SIP has a set of IM&P
extensions called ‘‘SIMPLE’’. Like Jabber, SIMPLE is an open standard; however unlike Jabber it does not
have a wide variety of implementations and it has very few users. Furthermore the protocol still lacks many
important features such as multi-user chat, file transfer, privacy lists, rich-text messages, etc. and even basic
things like one-to-one chat are not yet fully specified. As such, implementations of SIMPLE tend to rely on



-5-

proprietary non-interoperable extensions.

In practice, the way that SIP implementations are providing IM features is with a dual-stack approach:
using SIP for telephony and Jabber for chat. This is the approach taken by the soft phone programs Gizmo
Project[13] and OpenWengo[14].

At the same time, Jabber is being extended with telephony support. The leading example of this is Google
Talk. Google’s protocol extensions have been published under the name ‘‘Jingle’’[15], and they hav e released
an open source implementation which is being incorporated into clients such as Psi.

This is not a promising situation from the interoperability point of view. Howev er, Jingle uses the same
streaming media protocols as SIP (i.e. RTP), and the signalling concepts are similar, so it is likely that it will be
easy to gateway between Jingle and SIP in the future. There are already multiple open VOIP standards – H.323
and IAX as well as SIP – so another does not make things significantly worse. However there are network-
effect advantages to having a single instant messaging network. At the moment it looks like Jabber will be the
IM protocol of choice, and VOIP interoperability will rely on gatewaying.

There are also a number of popular closed VOIP applications, notably Skype and Apple iTalk. I believe
that iTalk can use Jabber for VOIP signalling as well as IM (although it does not use Jingle) so it fits in well with
our plans for the Chat service. In the medium term, we will be able to recommend Jabber clients that support
Jingle telephony as an alternative to the problematic Skype.

9. Chat service summary

This section lists the features that we plan to support in the initial version of the University’s Jabber ser-
vice. This list is reasonably modest in order to keep the development time within the target release date of July.

• Core Jabber features, including one-to-one chat, presence, privacy lists, and communication with the pub-
lic Jabber network.

• Multi-user chat, for subject-related discussion between students and teachers, and to provide ‘‘virtual
common rooms’’ for departments and colleges.

• Foreign protocol gateways, to make it easier for people to use the Chat service in conjunction with any IM
accounts they might already have.

• A web-based client to make it possible to use the service without having to install extra software.

• Documentation and support for the above, plus the most popular native Jabber clients.

This service will be able to support other popular features such as file transfer and telephony, since these
typically work direct from client to client rather than requiring special server-side support.

10. Future possibilities

One of the advantages of running our own IM service is that it opens up opportunities for nice integration
with other facilities provided by the Computing Service. The following examples are not part of the initial
project specification for time reasons, but we have noted them as desirable future projects.

• The Sieve email filtering system on Hermes has a ‘‘notify’’ command which provides a hook for instant
notification of new email. It would be fairly straightforward to enable Jabber notifications.

• Jabber servers may have a User Directory. We can provide one which provides access to data from the
Lookup service.

Alongside email, wikis, discussion fora, and blogs, IM is an important part of a fully-featured virtual learning
environment.



-6-

References

1. Peter Saint-Andre, JEP-0071: XHTML-IM. http://www.jabber.org/jeps/jep-0071.html

2. Fabio Forno and Peter Saint-Andre, JEP-0072: SOAP Over XMPP.
http://www.jabber.org/jeps/jep-0072.html

3. Marshall T. Rose, “The Blocks Extensible Exchange Protocol Core,” RFC 3080 (March 2001).
http://www.ietf.org/rfc/rfc3080.txt

4. ejabberd: A free, distributed, fault-tolerant Jabber server written in Erlang.
http://ejabberd.jabber.ru/

5. The Psi Jabber client. http://psi-im.org

6. The Chat service wiki. http://wiki.csx.cam.ac.uk/chat/

7. Jabber Enhancement Proposals. http://www.jabber.org/jeps/jeplist.shtml

8. Peter Saint-Andre, (ed), “Extensible Messaging and Presence Protocol (XMPP): Core,” RFC 3920 (Oct
2004). http://www.ietf.org/rfc/rfc3920.txt

9. Peter Saint-Andre, (ed), “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and
Presence,” RFC 3921 (Oct 2004). http://www.ietf.org/rfc/rfc3921.txt

10. Peter Saint-Andre, “Mapping the Extensible Messaging and Presence Protocol (XMPP) to Common Pres-
ence and Instant Messaging (CPIM),” RFC 3922 (Oct 2004).
http://www.ietf.org/rfc/rfc3922.txt

11. Peter Saint-Andre, “End-to-End Signing and Object Encryption for the Extensible Messaging and Pres-
ence Protocol (XMPP),” RFC 3923 (Oct 2004). http://www.ietf.org/rfc/rfc3923.txt

12. Gaim: A multi-protocol instant messaging (IM) client. http://gaim.sourceforge.net/

13. Gizmo Project. http://www.gizmoproject.com/

14. OpenWengo. http://www.openwengo.com/

15. Jabber Software Foundation Publishes Open VoIP and Multimedia Protocols.
http://www.jabber.org/press/2005-12-15.shtml


