
Exim configuration at the University of Cambridge

Tony Finch <fanf2@cam.ac.uk> <dot@dotat.at>

University of Cambridge Computing Service

ABSTRACT

Exim was originally written nearly 10 years ago for use on the email servers at the Uni-
versity of Cambridge, and our requirements still have significant influence on Exim’s dev el-
opment. Our central email systems provide a number of message transport services, including
a general-purpose smarthost, an authenticated message submission service usable by roaming
users, and the University’s main incoming MX.

This talk will describe some notable features of our Exim configuration, including:
call-out address verification; basic anti-spam checks; TLS and AUTH; virtual services; effec-
tive use of macros and table lookups; stunt routers; and kamikaze string expansions. This will
be explained in the context of a real live service handling over 400 000 messages each day for
over 34 000 users.

1. Introduction

The bulk of this paper is a description of the Exim configuration on the central email relay run by the Uni-
versity of Cambridge Computing Service, which is known as ppswitch. This is intended to provide examples of
some more advanced Exim features than provided by the default configuration file that comes with Exim. These
examples are based on real world experience of running a reasonably large and featureful email system.

Section 2 describes the history and context in which ppswitch operates, together with an overview of the
complete central email systems. This should explain the reasons for the various configuration details in the fol-
lowing sections.

The next two sections describe the technical details of the configuration. Section 3 describes the Access
Control Lists, which implement ppswitch’s various service personalities for incoming and outgoing email, and
some of our anti-spam protections. Section 4 describes the email address routeing, which implements features
such as virtual domains and mailing lists, and special handling for the Hermes message store and departmental
email servers.

Section 5 describes some bits and pieces that do not currently appear in our configuration but which may
be of interest. Section 6 describes the style rules used to lay out the configuration file in a readable manner.
These rules were developed to make it easier to maintain a large and complicated configuration.

Section 7 outlines some planned and potential work for the future, followed by some concluding remarks
in section 8. Finally, the appendices in section 9 contain the text of the configuration files which are described
in this paper.

2. Background and context

This section explains the whys and wherefores of ppswitch’s configuration file: why it provides the facili-
ties it does, and why its architecture is what it is. Our paper about Hermes[1] provides a slightly different per-
spective, which might also be of interest.

2.1. History

PPswitch was introduced in 1992[2] to provide gatewaying between Internet email and JANET ‘‘Grey
Book’’ email. It is named ppswitch after the software it originally ran, PP[3]. At that time most of the Univer-
sity’s users used Grey Book email on the old IBM mainframe system ‘‘Phoenix’’, which had been the basis of

This paper was presented at the First International Exim Conference and Tutorial on the 23rd & 24th February 2005
in Birmingham and is published on the Web at
http://www.cus.cam.ac.uk/˜fanf2/hermes/doc/talks/2005-02-eximconf/

-2-

the Computing Service for over 20 years. Since 1990 there was also the Central Unix Service (CUS) which pro-
vided Internet email. In 1994-1995, the need for Grey Book support declined rapidly. Phoenix was due to close
on 1st September 1995[4]; its email-only users were being moved to the new Hermes email service[5] and oth-
ers were being moved to CUS. UKERNA decided that Grey Book email was officially obsolete at the start of
1995, and by the end of the year ppswitch was handling Internet email only.

Some other early facilities implemented by ppswitch were also influenced by the closure of Phoenix. A
mailing list system[6] was implemented to take over from Phoenix’s lists. The Computing Service’s departmen-
tal email domain @ucs.cam.ac.uk[7] and the University-wide @cam.ac.uk email domain[8] allowed people to
be contacted using a consistent address regardless of the system they used for email, which became a considera-
tion when Phoenix was no longer effectively the only computer.

The facilities described so far all predate Exim. Philip Hazel started writing Exim in 1995, and the Com-
puting Service started running it on the major central systems in 1996, first CUS in June and then Hermes in
August. Before then these systems had run Smail[9]. One of the initial motivations was to improve upon
Smail’s access controls, which was becoming an area of concern as spam became common. Another new fea-
ture that Exim provided was support for multiple mail domains, which was required by ppswitch. It also started
running Exim in August 1996.

After this point, ppswitch acquired more facilities: The ‘‘Managed Mail Domain’’ system[10] provides
virtual email domains, each consisting of an aliases file which can be edited using a friendly user interface. The
mailing list system was upgraded to support restricted and moderated lists[11]. More recently, a full-content
anti-spam and anti-virus email scanner was added to ppswitch to provide significantly better central protection
against junk email[12].

As well as using the central email facilities, Colleges and departments of the University can run their own
email systems. This is particularly useful for institutions who want features that aren’t provided by the Comput-
ing Service, such as calendaring and other groupware functions. Although these email systems can communi-
cate directly with the public Internet, many of them opt to send and receive email via ppswitch, to provide pro-
tection from hackers; this has become more popular since the improvement of the anti-spam and anti-virus pro-
tection. Departments can also use ppswitch as a backup MX.

Although ppswitch and Hermes have – until recently – been separate systems, ppswitch has never had a
user interface of its own, instead relying on the Hermes menu system for management of mailing lists and vir-
tual domains. This semi-detached arrangement changed with the recent Hermes upgrade[1], and now Hermes
and ppswitch are effectively aspects of the same system. A POP and IMAP proxy running on ppswitch makes
the multiple Hermes message store machines appear like a single system; more relevant to this paper, howev er,
is that Exim on ppswitch also handles email delivery to the Hermes message store, and provides the message
submission service for Hermes users.

2.2. Architecture

Cambridge University’s central email systems consist of two large clusters and a few other miscellaneous
machines. The clusters are ppswitch and the Cyrus message store; each cluster consists of machines of essen-
tially identical configuration, differing only in the data that they store. The other machines include the central
MUA service (comprising a mirrored pair of machines), a backup server with lots of online and offline mass
storage, and an administrative support server which is used to manage the configuration of the other machines
and control the propagation of changes around the system.

Tw o services are provided by this setup: Hermes, which is the email service for individual users; and
ppswitch, which provides email relay services. The names we use are somewhat ambiguous, so deserve an
attempt at clarification. Hermes is the name of the service as a whole; hermes.cam.ac.uk provides access to the
terminal-based menu system and Pine; and hermes-1 and hermes-2 are the machines the central MUAs run on.
PPswitch is both the name of the email relay service and the cluster it runs on (which also supports the redirect-
ing proxy for pop.hermes.cam.ac.uk and imap.hermes.cam.ac.uk). PPswitch’s personality – its rules for accept-
ing email – depends on the IP address on which it is contacted (as explained in more detail below) either
ppsw.cam.ac.uk1, mx.cam.ac.uk, or smtp.hermes.cam.ac.uk. PPswitch’s individual machines are named ppsw-0
to ppsw-92.

Hermes has over 34 000 users, about 27 000 of whom log in at least once a week. They are provided with
a basic quota of 250MB (upgradable to 1GB) for storing email, which their MUA software can access via POP
or IMAP. Hermes also provides central MUA facilities, so that users can read their email via the WWW, or

1 ‘‘ppsw’’ can be pronounced as it is spelt or like ‘‘ppswitch’’.
2 Not all of these names may be in use at once: at the moment we have 7 ppswitch machines active.

-3-

cyrus-1 · · 8
msg. stores
cyrus-1 · · 8
msg. stores
cyrus-1 · · 8
msg. stores
cyrus-1 · · 8
msg. stores
cyrus-1 · · 8
msg. stores
cyrus-1 · · 8
msg. stores
cyrus-1 · · 8
msg. stores
cyrus-1 · · 8
msg. stores

pair-wise
replication

cyrus-9 · · 16
msg. stores
cyrus-9 · · 16
msg. stores
cyrus-9 · · 16
msg. stores
cyrus-9 · · 16
msg. stores
cyrus-9 · · 16
msg. stores
cyrus-9 · · 16
msg. stores
cyrus-9 · · 16
msg. stores
cyrus-9 · · 16
msg. stores

POPIMAPLMTPSMTP
ppsw.cam

IMAP

hermes-1,2
MUA servers

SMTP
smtp.

hermes
ppsw-0 · · · ppsw-9admin

server

backup
server

disk shelf
tape robot

Pine

ssh

ssh and
telnet

webmail

HTTP

web
browsers

POP

pop.hermes

IMAP

mail user agents

imap.hermes

submit

smtp.hermes

SMTP

Cam Univ
servers

ppsw.cam

SMTP

The
Internet

mx.cam

Fig. 1: Cambridge University central email systems architecture

using Pine over ssh. Hermes now stores over 1TB of email. Because of the overheads of the performance and
reliability features (indexes, replication, retention of deleted data) this actually occupies about 4TB of space on
disk, out of the total of over 10TB usable in the whole system.

As well as handling all the email for Hermes, ppswitch handles email for over 160 virtual domains, over
4000 mailing lists, and over 70 departmental email systems. The volume during term is up to 400 000 messages
each day, averaging 8 messages per second 9 to 5. This does not include the messages that are rejected at SMTP
time, which is presently (Jan 2005) about 700 000 per day but has been as high as 1 300 000 per day (Nov
2004).

The configuration on ppswitch is divided into two differently-managed parts: the mostly-static configura-
tion files and tables under /opt/exim controlled by the system administrators (the main topic of this paper);
and the more fluid tables under /opt/dist for virtual domains, mailing lists, passwords, etc., which users can
edit using the Hermes menu system and other user interfaces. Both of these are distributed from the admin
server, the former as required by the admins (after being tested and committed to the configuration management
system), and the latter automatically every hour or so.

I mentioned above that ppswitch is a cluster of identical machines, which share all of the work equally.
There are two reasons for this: The present reason is that it makes system administration simpler because it
reduces the number of different configurations that we have to manage. Another view is historical: ppswitch has
always been a uniform cluster, and there has not been any reason to change this. This point is worth noting
because it is common for sites to split their email relaying machines into incoming and outgoing clusters, or to
separate quickly deliverable email from delayed email, etc. This might be to enable the configuration of differ-
ent email acceptance policies, or for reasons of performance management. I will explain how Exim’s extremely
flexible ACL system allows ppswitch to present multiple personalities, and how to thoroughly verify addresses
at SMTP time in order to avoid clogging queues with undeliverable junk.

3. Multiple personalities

In the mid 1990’s, spammers started seriously abusing email servers to hide the source of spam and to
provide bandwidth amplification. This led to a change in common practice: email servers no longer relay email
for anyone, but are locked down so that they distinguish between incoming email (destined to a local email
domain) and outgoing email (coming from a local network). The effect of this is that the email server has two
personalities: its rules for accepting email differ depending on where you are sending from. If you are on the
public Internet it has an MX personality and if you are on a local private network it has a smarthost personality.

It’s common on small systems for these two personalities to exist on the same IP address, and this is what
the default Exim configuration implements. Historically, ppswitch has also worked in this way: the host name
ppsw.cam.ac.uk was used both as a smart host3 for outgoing email from the University and as the MX host for
the University’s email domains. At that time, Hermes email – both incoming and outgoing – was handled by a
separate system. This arrangement became untenable with the introduction of the new Hermes system: the need

3 Of course the logical host name ppsw.cam.ac.uk has several IP addresses, so refers to several physical machines.

-4-

to handle its email on ppswitch implied the addition of a third personality. At the same time the advantages of
logically separating incoming and outgoing email had become clear: it would provide architectural flexibility
and allow a wider choice of anti-spam/anti-virus technology on the MX service, without interfering with the
smarthost service. Therefore we took the opportunity to rename our MX host to mx.cam.ac.uk4; ppsw.cam.ac.uk
was retained as the smarthost name because it would be much more difficult to inform everyone who needed to
know about the change – as well as for sentimental reasons.

Alternative approaches: Another way of implementing multiple personalities is to choose the personality
based on the port number instead of the IP address. The message submission personality runs on ports 465 and
587, and the traditional hybrid MX/smarthost runs on port 25. This may be a simpler way to add a modern
secure authenticated message submission service to an existing system. However it loses some of the advan-
tages of providing a clear distinction between incoming and outgoing email.

3.1. Differences between the personalities

type & name MX smarthost submission
feature mx.cam.ac.uk ppsw.cam.ac.uk smtp.hermes.cam.ac.uk

accept from anywhere CUDN only CUDN or AUTH

accept to +our_domains anywhere anywhere

verification sender + recipient sender only sender only

TLS no no yes

ports 25 25 25, 465, 587

fixed address no yes no

fix-ups none Date, Message-ID submission mode

anti-junk spam + virus virus virus

Fig. 2: Comparison of ppswitch personalities

The table in fig. 2 summarizes the differences between ppswitch’s three personalities. These are the MX
personality on mx.cam.ac.uk, which handles incoming email; the smarthost personality on ppsw.cam.ac.uk,
which handles outgoing email from other email servers, web servers, and miscellaneous machines; and the mes-
sage submission personality on smtp.hermes.cam.ac.uk, which handles outgoing email from Hermes users’
MUAs.

As explained in the introduction to this section, the MX personality accepts email from anywhere on the
Internet addressed to any of our email domains. (The +our_domains notation comes from the name of a
domain list in ppswitch’s Exim configuration.) Since it is the only way for email to come into the University5, it
is the only personality that implements anti-spam checks. Viruses, on the other hand, are filtered by all person-
alities so that they can be detected and stopped if they manage to get past our defences.

The smarthost and submission personalities on ppsw.cam.ac.uk and smtp.hermes.cam.ac.uk are quite simi-
lar at a first glance. A primary reason for separating them is that smtp.hermes.cam.ac.uk needs to support TLS,
so must offer a certificate to clients that matches its name; if a client were to address it as ppsw.cam.ac.uk there
would be a mismatch that would be likely to cause problems. A more subtle difference is that smtp.her-
mes.cam.ac.uk implements full submission-mode fix-ups to the message header, ensuring that the Sender:
Date: and Message-ID: fields are present and correct; ppsw.cam.ac.uk, on the other hand, does not have
enough information to fix the Sender: field so it leaves it alone, in order to avoid making gratuitous changes
to outgoing email from other email servers.

The submission personality uses some of SMTP’s more advanced features in order to support roaming
users. As well as being authorized to send email by virtue of being on the Cambridge University Data Network
(CUDN) – the same smarthost logic as ppsw.cam.ac.uk – Hermes users can also authenticate themselves in order
to send email from foreign networks. This is done using ESMTP AUTH and the SASL PLAIN or LOGIN
mechanisms [13,14,15,16]. These mechanisms transmit the user’s password in the clear, so we use TLS to
encrypt the SMTP session. Tw o modes of TLS are provided. The standard way is to start the SMTP conversa-
tion in the clear as usual, then use the STARTTLS command[17] to turn on encryption. This is offered on ports

4 This was not the best choice, despite being elegantly simple: it has a built-in assumption that there will not be
any need for a secondary MX, which makes the use of certain anti-spam techniques harder. It would have been bet-
ter to choose mx0.mail.cam.ac.uk and at the same time rename the rest of our machines into their own subdomain
separate from the general Computing Service internal domain.

5 To a first approximation; see the implementation sub-section for an explanation of why this is not always true.

-5-

25 and 587, the traditional SMTP port and the newer message submission port[18]. The older deprecated way is
to start TLS immediately after connection, before starting SMTP. This is offered on port 465 (the old SMTPS
port) to support software that does not implement the STARTTLS specification correctly, most notably
Microsoft Outlook and Outlook Express. We recommend to our roaming users that they do not configure their
software to user port 25, because it is more likely to be blocked than the alternatives[19].

The final point to note in this section is the logic for email address verification. In general we try to check
the email addresses in the message envelope as thoroughly as possible6. This reduces the quantity of resources
wasted by junk email, and makes it more likely that errors will be noticed and fixed before they cause email to
be lost. However the SMTP error handling of common MUAs is very bad, such that they report confusing error
messages to the user or fail to send the message to some of its recipients, etc. Therefore for outgoing email we
only check the MAIL FROM address at SMTP time; if any of the RCPT TO addresses are invalid, a bounce
message is returned instead of an immediate error. We do not do this for the MX personality, since any bounce
message sent in response to a forged message would be collateral spam.

3.2. Implementation of multiple personalities

Initially I attempted to implement all the personalities as part of the same ACL, in a similar style to
Exim’s default configuration. However, this resulted in a configuration that was hard to understand, difficult to
maintain, and buggy – it didn’t implement the policies I wanted. Individual ACL clauses became more compli-
cated, because they had to check both the current personality and the actual test of interest. The ACL as a whole
became more complicated, because various unrelated clauses were interleaved. I decided that it’s much simpler
to have a separate ACL for each personality. The logic for a given personality becomes clear: it is not cluttered
by extraneous tests. This directness of purpose makes it concise: all the principal ACLs in ppswitch’s configura-
tion fit on a single side of paper. This also makes it easier to check that they are correct.

The fundamental idea is for each ppswitch machine to have multiple IP addresses, one for each personal-
ity. Then Exim is configured to alter its behaviour based on the server IP address that the client connected to.
This is available in the expansion variable $interface_address. We don’t actually use this variable
directly: instead it is looked up in a table containing parameters associated with various addresses. (See line 23
of the configuration in Appendix 9.1, and the IP address parameters table in Appendix 9.3.) This allows us to
configure Exim in terms of features, somewhat independent of the low-level details of a particular personality.
As well as server IP addresses, the table is also used to hold parameters associated with various client IP
addresses, specifically other machines in the central email cluster for which we activate special features. (See
line 24.) Macro definitions are used to abbreviate these lookups throughout the configuration, most prominently
PARAM.

The result of the table lookup is a number of parameters, and we use ${extract to separate them out of
PARAM. One of the more important personality parameters is the personality’s hostname; a macro NAME is
defined to hold this value (see line 28). This macro also provides an example of how the configuration uses
default values to ensure that it remains moderately sane (e.g. not becoming an open relay) in case of misconfigu-
ration. A more elaborate macro is FULL_HOSTINFO (see line 30) which includes the individual machine’s pri-
mary hostname, the personality name, and the server IP address and port number. It is used in the smtp_ban-
ner and received_header_text settings (see lines 248 and 287 respectively) to provide details of which
machine and personality the client connected to, for example:

ppsw-6.csi.cam.ac.uk (smtp.hermes.cam.ac.uk [131.111.8.156]:25)

Most aspects of the personality are determined by the set of ACLs that it uses. These are configured using
the acl_smtp_* options. The value of these options is expanded, so we can use a personality parameter
lookup to select the ACLs we are using – see line 2127. Again, a default value is used to choose a reasonably
sane ACL for IP addresses (such as 127.0.0.1) which don’t hav e their own personalities. There are also some
personality-related settings outside the ACLs, which will be covered in the following subsections.

3.3. The smarthost personality

The preceding subsections might have giv en the impression that this is the simplest personality. Howev er
there are a couple of tricky features which make it more interesting. All of the smarthost personality is

6 Checking email addresses in the message header is rather problematic because of the high proportion of legiti-
mate but malformed email. We leave that job to SpamAssassin, not Exim.

7 At the moment we implement a hook for acl_smtp_data on like 217, but we do not currently use it. In the
past it was used for submission mode fix-ups before these were built in to Exim. In the future they will be used for
content scanning.

-6-

implemented in its ACLs, starting at line 365. Most of these perform the default accept action, except for the
RCPT ACL which, as usual with Exim, is where all the checks are performed.

The first clause ensures that port 25 is being used; this should probably be done in the connect ACL, but it
makes little difference in practice. The second clause ensures that people who are having configuration or inter-
operability problems can get through to our support staff. The third clause is a special case for other machines
in the central email cluster, in particular the Cyrus message store machines. Hermes users are allowed to set up
Sieve filters[20] which are run by the Cyrus lmtpd; these can cause email to be forwarded to another destina-
tion, and since the Cyrus machines do not have globally-routeable IP addresses, these forwarded messages must
go out via ppswitch. Since ppswitch has already done any necessary address verification when the message first
passed through, it can skip the checks on outgoing forwarded messages to save work.

The next two clauses are a wart. In an ideal world they could be replaced by:

deny
message = No SMTP service for unauthorized users

! hosts = +relay_hosts

However, for historical reasons ppsw.cam.ac.uk is an email domain as well as the hostname of the smarthost ser-
vice – it’s the domain used for email generated on ppswitch (see line 284). This means that ppsw.cam.ac.uk
should have an MX record; however if the MX record points to mx.cam.ac.uk then some systems will irritatingly
try to use mx.cam.ac.uk as their smarthost. Therefore if ppsw.cam.ac.uk has an MX record it must point to
ppsw.cam.ac.uk. This has a further implication that the smarthost personality must have a little bit of MX func-
tionality for email to addresses @ppsw.cam.ac.uk from the public Internet. Thus the fourth clause checks outgo-
ing email (to addresses other than @ppsw.cam.ac.uk) is only from +relay_hosts, and the fifth clause
ensures that other hosts can only send email to valid addresses @ppsw.cam.ac.uk. The +relay_hosts are
defined at line 114 to be all the machines on the Cambridge University Data Network (CUDN) – see Appendix
9.6. It has essentially the same meaning as the +relay_from_hosts setting in the default configuration file
that comes with Exim.

The next clause tells Exim to implement the appropriate message header fix-ups, then finally we perform
address verification. For normal messages we perform our usual sender address verification, which is explained
in more detail below. For bounce messages we check the recipient address instead, because bounces don’t hav e
a sender address to which we can send delivery failure reports (i.e. bounced bounces). This bounce recipient
verification is stricter than our sender address verification, because it does not include the exemption checks that
we implement for sender verification. The aim is to keep failed bounces closer to the systems that generated
them, since they are more likely to be noticed by someone who can do something appropriate with them. Note
that it uses the same time-out settings as sender verification, via the CALLTIME macro.

One feature of this personality, which is not evident from the configuration alone, is that in addition to its
name it has a rôle address, 131.111.8.129. This is listed near the start of the addrparams table in Appendix
9.3. Unlike the other IP addresses of ppsw.cam.ac.uk it is not tied to a particular ppsw-N machine, but instead is
an extra virtual IP address on one of the currently-active machines. The reason for this is that there are a num-
ber of departmental email servers and other SMTP clients which cannot be configured with a hostname for their
smarthost, or which run for a long time and only perform DNS lookups once at startup. 131.111.8.129 is guar-
anteed to be available regardless of which ppswitch machines are currently in use, which gives us more freedom
to reconfigure things without having to co-ordinate with departmental Computer Officers.

3.4. The message submission personality

The ACL for this personality is very similar to the smarthost personality’s. The differences are that: it
isn’t restricted to port 25; messages are accepted both from +relay_hosts and authenticated users; the wart
is missing; and full message submission fix-ups are performed. Note that the message submission domain is
extracted from the personality parameters, because it is different from $qualify_domain.

Most of the interesting features of this personality are implemented outside the ACLs. The simplest
example is the smaller message size limit imposed on Hermes users – see line 192. Slightly more complicated
is the lobotomizing of Exim’s SMTP implementation; this is partly done via the connect ACL at line 446, and
partly via a global option at line 253 (where the reason for it is explained; see also line 446). Note the use of
${if match{PARAM}{acl=submit} {:} {*} } as a shorter and simpler replacement for the pedantic
${extract {acl}{PARAM} {${if eq{submit}{$value} {:} {*} }} {*} }.

The most important non-ACL settings for message submission are the TLS setting starting at line 223.
These advertise TLS only when there is a certificate available, in a file with the same name as the personality’s
hostname. Also, port 465 is configured to use TLS-on-connect instead of STARTTLS. These settings are

-7-

important because they hav e the side-effect of enabling authentication – see line 699.

Most of our authentication configuration is very basic: the LOGIN and PLAIN authenticators are almost
straight out of the Exim documentation. However they are followed by a rather unusual EXTERNAL authentica-
tor. The SASL EXTERNAL mechanism exists to pull up authentication information from a lower layer (such as
TLS) as a kind of formalized layering violation. We’re using it for a slightly different purpose: to communicate
authentication information from the central MUA service (webmail etc.) to ppswitch. The reason for this it to
simplify automated per-user signing of email by allowing it to be implemented in only one place: on ppswitch8.

The Exim configuration for the MUA service can be found in Appendix 9.2. It is mostly quite straightfor-
ward. One tricky part is the fact that Exim has to trust the user that the webmail server runs as (prayer) to act
faithfully on behalf of users: as well as the trusted_users setting it is also given special handling when we
are working out which user to authenticate as on line 92. The other niggle is that there’s a mismatch between
SMTP authentication (which authenticates the whole client connection) and what we want to do (which is
authenticate individual messages). Therefore we must transmit only one message per connection to ppswitch so
that there’s a one-to-one match between authentication and messages – see line 114.

The alert reader may be wondering why email from the MUA service is sent via smtp.hermes.cam.ac.uk,
whereas email from the Cyrus message store is sent via ppsw.cam.ac.uk. The reason is that the former com-
prises newly submitted messages, so they are sent via the message submission service, but the latter comprise
existing messages that are being relayed. Relaying is unauthenticated and does not involve header fix-ups.

3.5. The MX personality

At a first glance this appears to be much more complicated than the other two personalities. However
most of the complexity is due to anti-spam measures which can be ignored for the moment. The section we are
concerned with in this sub-section is the RCPT ACL starting at line 567. This starts off with the same two
clauses as the smarthost personality.

The third clause prevents the MX personality from relaying all email presented to it. Note in particular
that this applies to all hosts, whether on the public Internet or on the University network. The reason for not
allowing local machines to relay via the MX personality is to thwart a spammer tactic. Although our block on
port 25 prevents spammers from simple use of zombies and open HTTP or SOCKS proxies, they can still use a
multi-hop technique. They connect to the proxy and use it to send spam to a smarthost which then relays it to
the Internet. They often use MX records to discover the network’s smarthost: in fact, Spamhaus recently
reported[21] that a new version of the widely-used Send-Safe spamming software has an easy-to-use feature for
sending spam via the MXes of the hijacked zombie PCs. We observed this technique being used with a machine
on our network in September 2004, which led to us locking down mx.cam.ac.uk for local machines as well as
remote ones. We hope that the combination of strict no-relaying rules on our MX and somewhat obscure
smarthost names will protect us from this exploit in future.

The fourth clause performs various anti-spam checks, by calling an auxiliary ACL. This avoids clutter in
the main logic of this ACL, and makes it easy to turn off spam checks for University hosts. The anti-spam
checks are described below.

The next three clauses perform envelope address verification. First we just check the domain of the
sender address, because this is a cheap way of rejecting obvious forgeries. Next we check the recipient address,
with a call-forward. If the recipient is on a departmental server we want to find out as soon as possible if the
address is valid in order to minimise the amount of undeliverable email we have to handle. The use_sender
option allows departmental servers to implement their own sender address blacklists and to distinguish between
normal messages and bounces. After recipient verification, we perform a full call-back sender verification. We
delay this as long as possible in order to avoid bothering the sender’s MX server for email we aren’t going to
accept anyway. The details of call-back verification are described in the next sub-section.

The final check is an overload protector. If email is arriving faster than MailScanner can handle it, the
incoming queue will grow and email will be delayed. Therefore, if the queue is longer than a few minutes of
scanning time, we defer the message. (The sender should immediately try another ppswitch system which is
hopefully not also overloaded.) When the load is high we make some effort to avoid re-scanning the queue
length and adding further to the load. We don’t perform this check for the other personalities in order to avoid
worrying users with a temporary problem.

8 This is the subject of my paper for the UKUUG Winter Conference which immediately follows the Exim confer-
ence this year.

-8-

3.6. Call-back verification

All of the personalities’ RCPT ACLs call an auxiliary ACL to do sender call-back verification. This starts
at line 635 in the configuration file. The purpose of the added complexity is to avoid performing call-back veri-
fication when it is known that the result will be incorrect. There are two common reasons for legitimate email to
have a sender address that appears to be invalid or which cannot be verified at all: the sender domain’s MTA is
either misconfigured or incompetently written, and rejects all bounce messages; or the email comes from a web
server which is not running an MTA, and its sender address is of the form httpd@host.name.of.web.server. The
general goal of the ACL is to detect totally invalid email without penalising legitimate email just because of
technical incompetence.

Most of the work of maintaining an exemption list has already been done for us: the rfc-ignorant.org
project keeps a list of domains which are known to reject all bounce messages (or Delivery Status Notifications,
DSNs). Slightly unusually, we use this list as a whitelist (not a blacklist!) to exempt domains from sender call-
back verification. We also periodically run a script to search our logs for domains that ought to be listed and
submit them for inclusion in dsn.rfc-ignorant.org.

In addition to that we have a locally-maintained list of problem addresses and domains, for example email
addresses that refer to web servers, domains which do not like call-back verification, and other problems which
are not sufficiently clear-cut to be listed by rfc-ignorant.org. Our local list has less than 100 entries, which is
orders of magnitude fewer than the thousands listed by rfc-ignorant.org. The somewhat complicated double
lookup allows us to be very specific or general in our listings; see the nocallout table examples in Appendix
9.6.

Note that this auxiliary ACL does not do any verification of exempted domains. This means that callers
must do verify = sender to verify the sender’s domain, either immediately before as in the smarthost and
submission ACLs, or before recipient verification as in the MX ACL. Also, this ACL could be improved some-
what by using the new $sender_verify_failure variable to dynamically detect those unlisted RFC-igno-
rant domains that immediately reject MAIL FROM:<>.

3.7. Anti-spam measures

This configuration uses four anti-spam techniques: address verification, which we have already covered;
ratware HELO signature detection; DNS blacklists; and pump-and-dump detection. The latter is implemented in
the MX personality’s connect and HELO ACLs, and the remaining two are implemented in the auxiliary spam
check ACL. Together these checks reject about 90% of spam.

The HELO checks start on line 659. These detect a number of SMTP protocol implementation bugs
which are unique to spam software (‘‘ratware’’), and which are therefore very reliable anti-spam criteria. The
first check detects bare IP addresses, such as 192.0.2.54. Although SMTP allows clients to state an IP
address instead of a domain name as the argument to HELO, they must do so in square brackets, like
[192.0.2.54]. Then we check if the HELO argument is the same as the recipient’s local part, for example,
HELO fanf2 / MAIL FROM:<scott@optinbig.com> / RCPT TO:<fanf2@cam.ac.uk> / RCPT
TO:<spqr1@cam.ac.uk>. This particular type of ratware uses multiple RCPT commands for each mes-
sage, so if our checks fail we remember this in the $ACL_OKHELO variable for future RCPT commands. Then
we check for excessively long HELO commands, or which have a syntax error (double dots) which Exim
doesn’t detect by itself. These bugs are caused by ratware that randomly concatenates domain names together to
create its HELO argument, which seems like a lot of work to make anti-spammers’ jobs easier. Finally, we
check if the ratware is stating one of our domain names instead of its own host name.

The pump-and-dump protection is based on Exim’s SMTP protocol synchronization checks. ‘‘Pump-and-
dump’’ refers to software which just pumps a load of SMTP commands at a server and ignores the responses.
We make Exim’s checks more effective by adding delays at various points in order to give it time to detect spew-
ing ratware despite long network round-trip times. These delays are inserted before the SMTP banner by the
connect ACL (see line 510), and before the response to HELO by the HELO ACL (see line 547). In addition to
the delays, we attempt to confuse shoddy software which doesn’t correctly handle multi-line SMTP responses
by adding a message to the SMTP banner – see line 248. I’m not sure how effective this is, but it is at least
amusing.

After messages have been accepted by Exim, they are processed by MailScanner[22] which passes them
through ClamAV[23], McAfee[24], and SpamAssassin[25]. MailScanner works using two spool directories: an
incoming queue in which Exim places new messages, and an outgoing queue from which deliveries are per-
formed. It moves messages from one spool to the other after passing them through the scanning software pack-
ages. Two corresponding copies of Exim are run: the outgoing Exim daemon just starts queue runners -q5m;

-9-

the incoming daemon is run in queue-only mode -odq so that it doesn’t try to deliver messages before
MailScanner has handled them, and it uses a command-line macro -DSPOOL=/spool/exim.in to override
the configuration file’s spool directory setting at line 139.

MailScanner passes all email through the virus scanners, but only certain email is passed through Spa-
mAssassin. The aim is to scan email that came from the public Internet, but that is not entirely straightforward
since email may come into the University via a departmental email system before arriving at ppswitch. At the
moment we maintain a list of systems within the University from which we will scan email, as well as from the
Internet; in the future we plan to reduce this maintenance work by simplifying the logic: we will only scan email
that comes in via mx.cam.ac.uk, based on the assumption that departments which receive email from the Internet
will route email to the MX rather than via the smarthost ppsw.cam.ac.uk.

3.8. Received header text

The final personality-related part of the configuration is the setting of received_header_text at
line 287. The purpose of this is to add extra information to the trace fields in the headers of messages handled
by ppswitch. We use the FULL_HOSTINFO macro to include details of both the personality and the individual
ppswitch host which received the message. We include details of the authentication mechanism and username,
as well as the TLS information which Exim includes by default. Finally, we record the message’s return path,
which makes it easier to trace messages that were sent via mailing lists that change the return path. The return
path is also used by SpamAssassin for some tests, and it isn’t otherwise available if, like us, you run SpamAs-
sassin before the Return-Path: header field is added at final delivery.

The Received: header is difficult to configure. A lot of care is required to stay within the syntax specified
in section 4.4 of RFC 2821[13]. It is further complicated by the need to control the format of the header by
careful placement of newlines in the string expansion. According to RFC 2822[26], each physical line in the
header should be kept to less than 78 characters, though we don’t quite manage this if the return-path or recipi-
ent addresses are long. The complicated series of nested string expansion items can easily become incompre-
hensible. Section 6 below describes my formatting rules which help to make it easier to follow.

4. Routers and transports

This section examines what we do with email after accepting it, that is, determining its destination and
delivering it. Fig. 3 provides a simplified overview of this process. The architecture diagram in fig. 1 hides the
routeing complexity that is internal to ppswitch: there are very few external SMTP9 connections. Similarly, fig.
3 has few external connections: most of the diagram is concerned with virtual domains and mailing lists, which
cause a message to be redirected to a new set of recipients and passed through the routeing process again.
Whereas the ACLs do not have complicated table lookups – just +relay_hosts and +our_domains – the
routers depend on a large number of tables maintained by the system administrators and by users. After describ-
ing these in the first subsection, I will explain the details of the routers and their associated transports.

4.1. Routeing tables

The tables used in routeing can be divided into two classes. Tables that control higher-level aspects of the
configuration, such as which domains we handle, are used to construct a number of named lists starting at line
62. These named lists are used in router preconditions, to determine which domains are handled by which
router. The high-level tables are small in number and managed by the system administrators. The lower-level
details of routeing, such as the destination of each local part within a domain, are handled by table lookups con-
figured within the routers. There is a very large number of these tables – several for each mailing list and virtual
domain – and their management is generally delegated to users.

We hav e already seen the list of +our_domains (line 99), which is used by the ACLs as part of our
relaying restrictions. This is the list of all domains handled by ppswitch, which is constructed from the list of
domains handled on ppswitch itself, +local_domains, and the list of domains handled by departmental
servers, +relay_domains. These have essentially the same meaning as +local_domains and
+relay_to_domains in the default configuration that comes with Exim. I will explain the purpose of
+postmaster_domains in the ‘‘postmaster domains’’ sub-section below.

There are three kinds of local domain: managed mail domains, special cases, and long form domains. A
managed mail domain is a virtual email domain which simply consists of an aliases file that can be edited by the
domain managers using the Hermes ssh/telnet menu system. The list of managed mail domains includes some
special cases which have an aliases file like other managed mail domains; however the special case domains

9 Including the SMTP-alikes, LMTP and message submission.

-10-

table router destination

ppswnames postmaster redirect

special_routes
special_routes
(manualroute)

CUDN hosts
via smtp

relay_domains
lookuphost
(dnslookup)

CUDN hosts
via smtp

not domainlist
nor longshort

lookuphost
(dnslookup)

Internet
via smtp

HERMES
_CYRUS

hermes_lmtp
(manualroute)

Cyrus store
via lmtp

USERS/
cam_aliases

cam_aliases redirect

DOMAINS/
longshort

domain_
longshort

redirect

DOMAINS/
aliases/

$domain

domain_
aliases

redirect

DOMAINS/
managers/
$domain

domain_
postmaster

redirect

LISTS/
members/

$local_part

lists_
outgoing

redirect

LISTS/
moderators/
$local_part

lists_
moderators

redirect

LISTS/
managers/
$local_part

lists_
request

redirect

LISTS/*/
$local_part

lists_
process

list_pipe

Fig. 3: Address routeing on ppswitch

-11-

have extra routers in the configuration, which implement special handling for large numbers of email addresses
in addition to the aliases files. Long form domains are synonyms for existing domains, sort of domain-level
aliases. See Appendix 9.6 for examples of entries from the domainlist and longshort tables.

Long form domains are a newer feature than you might expect. In the days of Grey Book email, the NRS
(Name Registration Scheme) was JANET’s backwards counterpart to the DNS. It generally contained two
forms of each name, a short form like uk.ac.cam.phx and a long form like uk.ac.cambridge.phoenix. Cambridge
quickly dispensed with long form names after switching to the Internet protocols,10 however one lasting effect
has been that some of the short form domains are cryptic and ugly. Hence we are currently re-introducing a lim-
ited kind of long form domain for use in email addresses and URLs.

There are two kinds of relay domain: domains for which ppswitch will act as the secondary MX, and spe-
cial routes. Together these list domains handled by departmental email servers; in the first case the department
sends and receives email directly to and from the public Internet, whereas in the second case they do so via
ppswitch. The special routes table is used instead of the DNS, to route email to the right departmental server
when ppswitch is the domain’s primary MX. See Appendix 9.6 for examples from the relay_domains and
special_routes tables.

4.2. Postmaster domains

Our configuration on ppswitch includes somewhat over-engineered support for email to ‘‘postmasterish’’
local parts (i.e. postmaster@ and abuse@ – see line 107). As well as supporting postmaster@ all our normal
domains, we support it at any of ppswitch’s host names and IP addresses (for example, postmas-
ter@[131.111.8.129]). The aim of this is to support email to postmaster from automated systems or in other
cases where intelligent guessing of email domains cannot be expected.

The list of postmaster domains is defined at line 92. It includes all of ppswitch’s various names as defined
on line 86, and all of the current host’s IP addresses via the @[] notation. The list of +our_names is also
used for the hosts_treat_as_local setting on line 280, which protects against certain kinds of mail
loops. Email to IP addresses (known as ‘‘domain literals’’ in email terminology) must be specially enabled in
Exim: see line 277. The first two routers starting at line 765 implement the postmaster handling. The first one
just redirects all the relevant addresses to postmaster@ppsw.cam.ac.uk, and the second one produces a friendly
error message for any non-postmasterish address at a postmaster domain.

Note that we go through a number of contortions to handle the domain ppsw.cam.ac.uk correctly, because
of the overlap between +our_names and +local_domains. I have resolved this by omitting
ppsw.cam.ac.uk from +our_names and including it separately in the hosts_treat_as_local setting.
An alternative approach would be to give it a special exemption from the postmaster_error router, similar
to the handling for lists.cam.ac.uk in the domain_error router. Howev er giv en the problems that
ppsw.cam.ac.uk being an email domain causes in the smarthost ACL, it may be better to reduce it to a pure host
name and use another domain – perhaps hermes.cam.ac.uk – for ppswitch’s qualify_domain.

4.3. Remote domains

‘‘Remote domains’’ are not local domains, or in Exim syntax !+local_domains. This includes relay
domains and special routes, as well as all non-Cambridge domains. The next two routers in the configuration
handle these domains; see line 787. Both of these routers send email out using a very basic SMTP transport
defined at line 1040. Note that I have turned off TLS for outgoing email, since it wastes CPU that would be bet-
ter used for spam and virus scanning.

The first of these handles special routes, which are straightforwardly handled by the manualroute
router. If the lookup in the special_routes table succeeds, the result is appropriate for the route_data
setting – see Appendix 9.6 for examples. If the lookup fails the router declines, so processing falls through to
the lookuphost router; thus the domains precondition does not need to be precise. The effect of this is that
managed mail domains take precedence over special routes, because the existence of a managed mail domain
causes the domains precondition to fail. Alternatively we could perform the special_routes table
lookup in the domains precondition and set route_data = $domain_data; the effect of this would be
to make special routes take precedence over managed mail domains.

The lookuphost router is very similar to the dnslookup router in the default configuration file that
comes with Exim. It handles all routeing to domains by MX record, which includes domains in the
relay_domains table for which ppswitch is the secondary MX, as well as non-Cambridge domains. The
widen_domains setting is used to support traditional abbreviated email addresses, such as fanf2@ucs. It

10 Some universities kept both long and short forms; for example see Oxford’s documentation[27].

-12-

only really covers recipient addresses, so there is also a rewrite rule at line 749 for expanding sender addresses.
The mx_domains setting enforces the local policy that valid email domains must have an MX record. The
final twiddle is the ignore_target_hosts setting, which is somewhat more thorough than the default one.
It uses a list that is defined on line 120 to contain the appropriate reserved networks (see Appendix 9.5 and
[28]), and a list of the IP addresses of hosts referred to by wildcards in top level domains. The latter is a defence
against problems caused by Verisign’s Site Finder and similar breakage perpetrated by other registries[29].

4.4. Managed mail domains

The handling for managed mail domains (i.e. virtual domains) starts at line 873. The core functionality is
implemented by the domain_aliases starting at line 891. This is very similar to the system_aliases
router in the default configuration file that comes with Exim. The most important difference is that the location
of the aliases file is based on the domain that we are handling. The aliases file is also translated into a more effi-
cient format. Because managed mail domain aliases files may be edited by untrusted users, all the insecure redi-
rect router options are disabled so that the destination must be another email address. We also use the
check_ancestor option to improve the handling of certain kinds of redirection loops.

If a local part is not found in the domain’s aliases file, Exim falls through to the following routers. The
next router at line 905 deals with domain managers that have not defined postmaster@ or abuse@ addresses; by
default email to these addresses is sent to the domain managers. The file just contains a list of the managers’
addresses. Any other undefined address is handled by the domain_error router at line 920, which just sets
up an appropriate error message.

Expert readers might wonder why we hav e a separate domainlist table, rather than, say, using
dsearch;DOMAINS/aliases/. The reason is that we sometimes need to disable a managed mail domain
but keep its aliases file available for editing by the domain managers. This typically happens to domain that is
being migrated from a departmental server to a managed mail domain: the managed mail domain is created in
disabled mode so that it can be set up during preparation for the cut-over. Changing the priority of managed
mail domains and special routes might be another way to solve the problem, though it would not help much with
migrating a relay domain to a managed mail domain.

At the start of this section, at line 877, is the domain_longshort router which handles long form
email domains. A long form domain is a synonym for the corresponding short form domain, so the router just
replaces the domain part of the email address based on a lookup in the longshort table. (There is an example
of its contents in Appendix 9.6.) If the lookup fails, Exim falls through to the subsequent routers which handle
other local domains.

4.5. Special case domains

There are three11 special case domains which have additional routers of their own: hermes.cam.ac.uk,
cam.ac.uk, and lists.cam.ac.uk. Most of the addresses in each of these domains are handled by routers that are
specific to the domain; however they all have some additional addresses that are not managed in the usual way
for that domain. These include system addresses such as root@, or temporary work-arounds to compensate for
widely-distributed printing errors. These additional addresses are implemented using the managed mail domain
system. The @hermes and @cam routers appear before the domain_* routers, so that if they do not handle an
address Exim will fall through to check the additional addresses, and if none of them matches the
domain_error router will handle unknown addresses. The @lists routers are discussed in the next sub-sec-
tion.

Most @cam.ac.uk addresses are handled by the router starting at line 854. This is almost exactly the same
as the domain_aliases router, except that the location of the aliases file is different. The data for the file
also comes from a different source: jackdaw.cam.ac.uk, the Computing Service’s central user administration
database. Individual users are able to control the destination of their own @cam address[30] rather than requir-
ing the assistance of a domain manager, which is necessary when there are over 35 000 entries in the file. In the
past the main @cam aliases and the additional aliases were merged into a single table for use by Exim, but the
current approach means the table distribution scripts are simpler to maintain.

There are two routers for @hermes addresses, starting at line 818. One router is used for verifying
addresses and the other for routeing them to their destination. They are separated in order to save the cost of
call-forward recipient verification to the Cyrus message store, which is pointless since ppswitch has an accurate
list of Hermes users. Both routers use the HERMES_CYRUS macro defined on line 55; this does a lookup in two

11 The domain ppsw.cam.ac.uk is special in that it is wired into the configuration in various places, but from the
routeing point of view it is just another managed mail domain.

-13-

tables, one which maps users to the Cyrus machine that stores their email, and one which lists cancelled
accounts.12 Hermes accounts are usually destroyed about 15–18 months after they are cancelled, because users
often return after a year away. If the account doesn’t exist or has been cancelled, the hermes_* routers pass
the address on to the domain_* routers.

The transport configuration for Hermes is complicated by two things. Firstly, it uses the Local Mail
Transport Protocol[31] which is a variant of SMTP that allows the Cyrus server to provide different accept or
reject responses for different users after the message data has been sent. If a user is over quota, Cyrus will defer
the message for that individual user while delivering it to any other recipients that do not have quota problems.
The message remains on the queue on ppswitch to be retried later, and the Cyrus machines to not have to main-
tain delivery queues of their own. Secondly, Cyrus is very strict about rejecting messages that contain NUL
bytes. In an ideal world this would not be a problem, but buggy email software generates messages that are
slightly mangled by NUL bytes surprisingly frequently, and this caused complaints. Therefore we use a trans-
port filter to remove NUL bytes before they get to Cyrus. For performance reasons, we only do this if Exim
spotted a NUL byte when receiving the message, using the fact that the transport setting is expanded to
select the Hermes LMTP transport with or without the filter as appropriate.

4.6. Mailing lists

Cambridge uses home-grown software to implement its mailing list system[32]. Since the software is
unique and shortly to be phased out, I will only give a brief discussion of the implementation here.

The lists system is divided between the Exim routers and a support program called explode_list.
The latter implements the special features of lists, including moderation, approval, posting restrictions, and list
footers. All messages sent to the list are passed through this program: see the lists_process router at line
1018 which hands off to the list_pipe transport at line 1073.

Despite its name, explode_list doesn’t distribute messages to the list members. Instead it sends the
message to the list’s -outgoing address. The work of sending the message to the list members is entirely
handled by Exim’s lists_outgoing router: see line 934. The file is just a list of the mailing list members’
addresses. Postings to a list are forced to go via explode_list because the router condition requires outgo-
ing postings to come from the local machine. Only the ppswitch system administrators can forge them.

Moderation messages are also sent by explode_list, to the list’s -moderators address: see line
952. This works very similar to the -outgoing address, except that anyone is permitted to send a message to
a list’s moderators. However, a list might not have a moderation team configured, so this is checked for by the
router’s condition. If the condition fails – an empty or missing file implies no moderators – the next router at
line 972 redirects the message to the list’s managers instead, who are the default moderators.

The next two routers implement a couple of aliases for the list managers’ address. The -owner address
is traditional; the -request address is used as the return address on outgoing postings to the list (see line 950)
so that list managers handle bounces. The actual list managers distribution router is at line 993; it is very similar
to (and simpler than) the -outgoing and -moderators addresses.

The special list verification router at line 1007 is slightly subtle. Instead of verifying that we can deliver
the message to explode_list, we check that after the message has passed through explode_list to the
-outgoing router, it will be given a valid return address – i.e. that the list manager’s address is valid. This is
to catch messages to lists that are orphaned by the departure of their managers. In fact, because Exim stops veri-
fication when it finds an address has more than one destination, this only deals with lists that have one manager.
Other cases are eventually handled by postmaster@lists.

The list handling is all kept at the end of the routers section because there is so much of it, and it keeps the
interesting logic of the other routers together. The number of domains handled by the routers decreases as you
read through the file: all non-local domains, then local domains, and finally lists.cam.ac.uk only. The
domain_error router is last router apart from the lists – see its domains precondition at line 925. The lists
have their own last-of-all error handling router at line 1027 with a message that talks about lists rather than
users.

5. Miscellanea

This section describes some Exim ‘‘hacks’’. The first two sub-sections describe a couple of stunt routers
that I have used in the past as part of our live configuration to fulfil some special requirements. The final sub-
section is just for fun.

12 We plan to improve efficiency by replacing these with a single table of active accounts.

-14-

5.1. Draining queues

One thing that must be dealt with when taking a machine out of service is preserving all of its unique data.
On ppswitch this means moving the queue data to another ppswitch machine. One way of doing this is with the
following router:

drain:
driver = manualroute
no_verify
require_files = TABLES/drain_info
route_data = ${readfile{TABLES/drain_info}}
transport = smtp

Most of the time this router does nothing. It can be activated by creating a file containing the name of the
host to which the queue should be drained, for example:

echo ppsw-5.csi.cam.ac.uk > /opt/exim/etc/tables/drain_info

This router is designed to work in conjunction with the benice feature of our ACLs – see line 454. This
ensures that messages being transferred from a privileged machine will be accepted without question. However
if you look at Appendix 9.3 you will see that ppswitch is nice to the Cyrus machines, but it is not nice to other
machines in the ppswitch cluster as would be necessary to support this router. This is because we no longer use
this method for draining a queue because it has a few problems. The drain router doesn’t preserve authentica-
tion information when transferring messages, which is required for some of the anti-spam features we are plan-
ning for the future. It also doesn’t preserve the message age information, which messes up retry calculations
and can cause duplicate delay warning messages.

Our current approach to preserving the queue of a decommissioned machine is to tar it up and copy it to
another machine. We use the localhost_number feature (see line 196) to ensure that message IDs are
unique across the ppswitch cluster, so that when a queue is moved to a new machine there will not be any file
name collision. This method preserves authentication information, details of the client machine that sent the
message, the message age, and other metadata.

5.2. Scanner testing

Before I deployed MailScanner I did some testing using real email in order to ensure that my candidate
configuration did not do anything unexpected. I also wanted to get an idea of its performance and its behaviour
under overload conditions. This meant I needed a way to get a copy of part of our email traffic sent to my test
server, which would then run it through the scanner before discarding it. I also needed to be able to adjust the
volume of the test traffic so that it could be slow enough to observe in real time, or fast enough to load the test
machine. The solution was a more elaborate version of the drain router from the previous sub-section.

TAP_INFO = ${readfile {TABLES/tap_info}{:} }

...

traffic_tap:
driver = manualroute
no_verify
require_files = TABLES/tap_info
condition = ${if eq{a}{${hash {1} \

{${extract {2}{:} {TAP_INFO} }} \
{$message_headers$message_body} }} \

{yes} {no} }
address_data = ${if !def:address_data {tapped} fail }
route_data = ${extract {1}{:} {TAP_INFO} }
unseen
transport = smtp

The file that controls the router has two colon-separated fields: a hostname and a number. We use
${extract to pull out the individual fields, see for example the route_data setting (and compare it with
the drain router). The number field is used to select a fraction of the total traffic: if the number is 4 then a quar-
ter of the traffic is tapped. We use ${hash to generate a random letter from the first N in the alphabet (e.g. a, b,

-15-

c, d if N = 4), and the letter is always the same for a given message so that the decision to tap is consistent. If
the letter is ‘‘a’’ then the message is tapped.

In order to ensure that the testing doesn’t affect normal email handling, the traffic tap takes a copy of the
email. This is done using the unseen setting. However we also have to ensure that a message isn’t repeatedly
tapped each time it passes through the routers. This is done using the address_data setting: if no address
data has been set, it is set to ‘‘tapped’’; if it has already been set then the expansion failure causes the traffic tap
router to be skipped. Users don’t receive duplicate email because the test system is configured to discard it.

5.3. An Exim quine

Readers of the exim-users mailing list might have noticed the cryptic signature I use on my postings:

<fanf@exim.org> <dot@dotat.at> http://dotat.at/ ${sg{\N${sg{\
N\}{([ˆN]*)(.)(.)(.*)}{\$1\$3\$2\$1\$3\n\$2\$3\$4\$3\n\$3\$2\$4}}\
\N}{([ˆN]*)(.)(.)(.*)}{\$1\$3\$2\$1\$3\n\$2\$3\$4\$3\n\$3\$2\$4}}

This is an Exim string expansion ‘‘quine’’, i.e. a program whose output is its own source code, named after the
logician Willard van Orman Quine. The version in my email signature is laid out to fit the space available, but a
shorter and clearer version of the quine is possible:

${sg{\N${sg{N\}{(.*?)N(.)(.*)}{\$1\$2N\$0\$2N\$3}}\N}{(.*?)N(.)(.*)}{\$1\$2N\$0\$2N\$3}}

Quines are constructed in roughly the same way in any programming language. They consist of a quoted string
and some code which prints out two copies of the string, one copy in quotes and one copy bare. If the quoted
string contains a copy of the code, then you have a quine.13 In the Exim quine the quoted string appears between
the two \N no-expansion markers:

\N${sg{N\}{(.*?)N(.)(.*)}{\$1\$2N\$0\$2N\$3}}\N

The code part is an ${sg expansion item, whose first argument is the quoted string (marked with · · · below):

${sg{···}{(.*?)N(.)(.*)}{\$1\$2N\$0\$2N\$3}}

The second argument is a regex to match against the quoted string. This breaks the string up into a preamble
before the first N, the N itself, the following character, and the rest of the string. The character after the N in the
quoted string is a backslash, which we capture in the regex match variable $2 in order to include it in the output
without quoting problems. The final ${sg argument is its output string, which consists of the preamble $1, a
quote mark $2N, i.e. \N, the original quoted string $0, another quote mark, and a copy of the code consisting of
ev erything from the first }. The output string is peppered with backslashes so that the variables are interpolated
after the regex match.

Although this is just a bit of intellectual fun, it also has a purpose: it demonstrates that Exim’s string
expansions are extremely powerful, and at the same time shows that they can become incomprehensible. This is
true for real-world string expansions as much as for kamikaze string expansions – see the discussion about the
received_header_text setting in section 3.8. The following section describes how you can reduce the
problem by using a good layout style.

6. Style

I hav e diverged somewhat from the style used by the default configuration file in the Exim distribution.
The aim of style rules is to improve the readability and maintainability of the file. Exim has a very large number
of options, not all of which are clearly named, so you can help the reader by ordering options systematically to
suggest what area of functionality they affect. Some parts of Exim’s configuration language can become very
cryptic, but you can mitigate this with careful layout and judicious use of macros. In this section I’ll describe
the style rules I use and explain the rationale for them.

6.1. Order of sections

The order of the sections in ppswitch’s configuration file is intended to correspond roughly to the order in
which they apply to a message, as follows:

• Main configuration

This section must appear first in the file. The order of the items inside it is explained below.

13 This is explained better by David Madore[33].

-16-

• Access Control Lists

This section controls SMTP input, so it appears near the start. Within the section the ACLs are ordered
according to the SMTP conversation, i.e. not_smtp, connect, helo, expn, vrfy, etrn, starttls, auth, mailauth,
mail, rcpt, predata, data, quit. However ppswitch’s multiple-personality configuration is a little more com-
plicated than that, so the ACLs are ordered first by personality then according to SMTP.

• Local-scan options

We don’t use any local_scan extension, but if we did the options would go after the ACLs.

• Authenticators

Authentication is closely related to access control, which is why it appears next. This makes most sense
when Exim is providing authentication as a service; when it is authenticating as a client it would make
more sense to put the authenticators after the transports. However Exim muddles client and server authen-
tication together, and since server authentication is more common I have decided to put the section here.

• Rewrite rules

Addresses are rewritten before they are routed, so the rewrite rules appear immediately before the routers.
Rewrite rules can also apply at SMTP time before the ACLs run, but this is a discouraged and rarely-used
feature, so this section is most comfortable here.

• Routers

This section slots in logically between the rewrite rules and the transports.

• Transports

After a message has been routed it is transported, so the transports section appears next.

• Retry rules

Finally, if a message is not delivered successfully it is retried at a later time, so the retry rules appear last.

6.2. Main configuration section

As well as general configuration directives, this section contains macro definitions (which I put first) and
named list definitions (which I put between the macros and the general directives).

I’ve used macros fairly heavily, for about three different purposes: to abbreviate pathnames; to hide com-
plicated lookups; and to make ACL variable names more readable. In all cases the macros replace a string
which appears a number of times in the configuration, so they also help to ensure that consistent settings remain
so. They are also particularly useful for improving readability, especially for complicated string expansions.
The idea of using them to provide more meaningful names for ACL variables is due to Matthew Newton of the
University of Leicester.

The main configuration directives can easily become unwieldy: ppswitch’s configuration has nearly 200
lines of them. Fortunately the Exim specification includes lists of the directives divided into categories, and I
have used these categories to divide up the section into groups of related directives. Some directives are listed in
more than one category in the specification, and this provides you with some flexibility in ordering your configu-
ration.

6.3. Routers

A large proportion of the logic of an Exim configuration is in its router configuration, so it is important to
make the routers easily understandable by people reading the configuration file (including the original author
weeks later!). Fortunately routers are usually quite short and simple-looking, but there is a large number of
router options some of which have quite subtle behaviour. You can improve the clarity of the configuration by
careful ordering of the router options, as follows:

• First declare the router’s driver.

• Then put any preconditions, in the order in which they are tested. This is described in the ‘‘Router Pre-
conditions’’ section of the Exim specification.

• Some router options can cause a router to decline or pass, for example, if string expansion fails. This is
similar to the effect of failed a precondition, so these options should appear next. Generic options should
come before per-driver options.

• Most of the per-driver options that can affect whether the router accepts are related to configuring the
actions of the router, so immediately after them come the other per-driver options that configure the core

-17-

functions of the router.

• Next come the various options that control subsequent routing, such as which router to use instead of the
following one when this router does not accept. The redirect router also has some per-driver options
which fall into this category.

• Finally come the options related to the transport that is set up by the router. A few of these are expanded
in a specific order, so they should appear first in the order: errors_to, headers_add, head-
ers_remove, transport. The redirect option also has a few _transport options which can
appear next, followed by any of the remaining transport-related options.

6.4. Transports

Transports tend to be rather simpler than routers from the configuration point of view. They hav e fewer
clear criteria for deciding in which order to write the options, but at the same time the order matters less for clar-
ity. I use the following guidelines:

• First declare the transport’s driver.

• Then put any options that affect the delivery destination, or whether delivery is successful.

• Closely related to the preceding are the options that can be used to override the result of routing, so they
come next.

• Then options that alter the message before delivery, or which affect its format.

• Finally put any options that don’t fall into any other category.

6.5. Layout

In the default configuration file, the equals signs in the ACL section are lined up vertically. I have
extended this to the other sections of the configuration. This helps to visually separate the option names from
their values, making the option names easier to read especially when options of widely differing lengths appear
next to each other.

One disadvantage of this is that it tends to make option values march off the right-hand-side of the screen,
especially in the ACL section. To reduce this problem I have put the ACL conditions and modifiers under their
controlling verb, indented slightly. Two features alter the logic of ACL verbs: the not-operator ‘‘!’’ and the
endpass modifier; I line these up under the ACL verb.

Another ACL style guideline worth noting is to always put any message modifier first (unless there are
special reasons for putting it later). This avoids confusing mistakes caused by the short-cutting logic of ACLs,
especially in the case of the require verb.

6.6. String expansions

This is where there is the most scope for making Exim configurations hard to read, let alone understand
and maintain! Exim allows you to add white space and line breaks at certain points inside string expansion
expressions without affecting the result, and this can be used to improve readability. In general, my rule is to
space out the inside of expansion items14 (where white space is not significant) so that the item’s arguments are
separated and the closing brace is not cuddled15. (Exim requires the opening brace and keyword to cuddle.)
Whitespace in nested braces inside expansion items is usually significant, so nested braces are cuddled, as are
braces around expansion operators16.

The general spaced-out rule has exceptions where that improves readability, for example the condition
part of a ${if is not spaced out in order to keep it as a visually distinct unit from the other arguments. In fact
there are several expansion items which end with two arguments for the success and failure cases (which are
spaced out) following the non-optional arguments (which are not spaced out). If the line needs to be broken for
length reasons, this is done before the success argument.

These rules are not very clear when described in the abstract, so I’ll list prototype layouts for individual
expansion items which aren’t simply spaced-out. I hav e indicated good places to break the line with a backslash
‘‘\’’; if you need more breaks than this, breaking between {yes} and {no} is always an option – on the other
hand the {yes} and {no} parts (or just the {no} part) may always be omitted17. Arguments on subsequent

14 Expansion items start with a bare keyword, for example ${if.
15 By ‘‘cuddled’’, I mean {cuddled} as opposed to { not cuddled }.
16 Expansion operators start with a keyword and a colon, for example ${md5:.
17 This is a new feature of ${if in 4.50.

-18-

lines should usually be lined up under the first argument. There are two exceptions to this: conditions, which are
covered below; and single-key lookups with a long key, where the type should be lined up under the lookup
keyword.

${extract {key}{string} \ {yes} {no} }
${extract {num}{sep}{string} \ {yes} {no} }
${hash {n}{m} {string} }
${hmac {type}{secret} {string} }
${if cond \ {yes} {no} }
${lookup type{query} \ {yes} {no} }
${lookup {key} \ type {file} \ {yes} {no} }
${substr {n}{m} {string} }
${tr {string} {chars}{replace} }

Complicated expansion conditions in ${if items can easily get unwieldy because of the number of extra
pairs of braces required by the and{} and or{} conditions. As for other conditions, I cuddle up the condition
and its braces, except that I do not cuddle the braces around each inner condition and I break the line between
them. A prototype layout would be:

${if cond{{ inner{}{} } \
{ inner{}{} }} \

{yes} {no} }

Similar layout can be used for the saslauthd condition:

${if saslauthd{ {user} {pass} } \
{yes} {no} }

The general effect of the rules on complicated nested expansion expressions is to cause closing braces to
cluster in singles or pairs, which makes them easier to count and match with their opening braces. There are a
number of examples of this in the configuration file: see the HERMES_CYRUS macro at line 55; the
smtp_banner setting at line 248; the received_header_text setting at line 287; the back-logging
check in the ACL at line 612; the callback verification conditions at line 647; the HELO verification tests at line
659; the authentication lookups at line 718; and the non-empty file check at line 960.

7. Future work

A system administrator’s work is never done. There are a number of areas in which ppswitch’s current
implementation is not ideal, and of course we are working to improve them.

7.1. Anti-spam

In the anti-spam area the major problem at the moment is that users have no control over SMTP-time
checks. This is only OK so long as the one-size-fits-all approach is neither too strict nor too loose. A related
problem is that scoring email and allowing users to filter probable spam into a separate mailbox often has the
same effect as silently throwing away email, since users rarely check their spam folder. Again, this is only OK
if the scoring is reasonably accurate.

Therefore we are currently working on infrastructure that will allow users to control some personal set-
tings on ppswitch. The immediate goal of this is to implement forgery protection and collateral spam detec-
tion[34] (which will be a per-user option). When we replace MailScanner (or perhaps supplement it) with the
Exiscan content scanning features that are built-in to Exim from version 4.50, users will also be able to set a
spam score threshold above which email will be rejected at SMTP time instead of filtered into a spam folder.

Other planned work includes the implementation of Client SMTP Authentication[35]. This will replace
most of the HELO heuristics with DNS lookups. There’s also scope for better use of Exim’s logs to provide
data that could be used for a locally-maintained blacklist.

7.2. Mailing lists and domains

The current locally-develop mailing lists system lacks many features that are nowadays considered to be
basic requirements. These include automatic subscription and unsubscription, bounce handling, a web-based
user interface, and better MIME handling, including proper internationalization.

-19-

My colleague David Carter is currently adapting Mailman[36] to integrate with our local web authentica-
tion system[37]. I also have a deep background project to improve Exim’s handling of large recipient lists, in
particular to allow concurrent DNS lookups when routeing addresses, which should make it reasonable for Exim
to handle large mailing lists directly instead of relying on the mailing list manager to divide them into smaller
batches.

There are similar requests for the Managed Mail Domain service: automated management of the domain’s
aliases file, and a more modern user interface. However giv en that this does not affect a large number of users, it
is not currently a priority.

7.3. Reliability and availability

We currently rely on DNS round-robin to spread the load across the ppswitch machines. This has a num-
ber of disadvantages. If a machine fails we have to perform an emergency DNS update, and even then the bro-
ken address may remain cached for up to a day. When we take systems out of service for reconfiguration, we
must consider DNS propagation delays, and even after taking them into account some systems will still cache IP
addresses for longer than the TTL. This leads to unnecessary support questions, and means we have to imple-
ment a special IP address (131.111.8.129) for long-running client hosts.

The solution to this would be to deploy a front-end load balancer which handles configuration changes
and failures gracefully, so that users are not disrupted by them.

A further problem is that ppswitch depends on the hardware SCSI RAID controllers in each machine for
storage reliability: there is no higher-level replication as there is for the Cyrus message store. Catastrophic fail-
ure of a machine would mean the loss of hundreds of messages. Fortunately, in the past we have been able to
recover queued messages from the remains of broken machines[38]. A solution to this might involve low-level
replication technologies, though we tend to prefer application-level replication since it’s easier to understand and
debug.

8. Conclusion

Exim is an extremely flexible MTA. This paper has shown how we use this flexibility to provide a richly
featured email service, with a very simple architecture that reduces the complexity of system management and
scaling. This is especially due to the expressiveness of Exim’s SMTP-time policy control, in the form of its
Access Control Lists. Although our email routeing and delivery requirements are not especially complicated,
Exim allows some nice simplifications and optimizations, and when we do need to perform stunts we can usu-
ally do so without extra programming. Exim’s configuration can become cryptic unless care is taken with lay-
out, so I have dev eloped a style which makes it easier to read our configuration file.

Our configuration uses several of Exim’s latest features, which have been implemented by Philip Hazel at
least partly because of local needs. Examples include RFC 2476 message submission mode and some of the
call-out options. Other options developed for use in Cambridge which do not appear in this configuration
include the mua_wrapper mode and the enhanced DNS lookup features. Our plans for the future mean that
this is likely to continue to be the case.

9. Appendices: configuration files and tables

The following sub-sections contain the live, unedited configuration files from our service machines. Not
all the configuration files have been included; in order to avoid uninformative repetition I have just provided
example lines from some tables. The configuration is not quite warts-and-all, because we maintain notes on
future configuration plans and testing configurations in a different branch of our revision management system.

-20-

9.1. Exim configuration on ppswitch
0001 # $Cambridge: hermes/conf/exim/etc/etc.ppsw/configure,v 1.294 2005/02/12 00:38:08 fanf2 Exp $

0003 ##
MAIN CONFIGURATION SETTINGS

0005 ##

0007 ## Macros for locating various files.

0009 # data that comes from other machines

0011 CERTS = /opt/dist/certs
DOMAINS = /opt/dist/domains

0013 LISTS = /opt/dist/lists
USERS = /opt/dist/users

0015

configuration that belongs to the Exim package
0017

DB = /opt/exim/etc/db
0019 TABLES = /opt/exim/etc/tables

0021 ## Behaviour changes based on our name

0023 INTERFACE_PARAM = ${lookup {$interface_address} cdb {DB/addrparams.cdb} }
SENDER_PARAM = ${lookup {$sender_host_address} cdb {DB/addrparams.cdb} }

0025

PARAM = INTERFACE_PARAM
0027

NAME = ${extract {name}{PARAM} {$value} {localhost} }
0029

FULL_HOSTINFO = $primary_hostname (${if def:interface_address \
0031 {NAME [$interface_address]:$interface_port} \

{NAME} })
0033

Some abbreviations for ACLs and routers
0035

ACL variable names
0037 #

time to delay if the sending host is dodgy
0039 ACL_DELAY = acl_c0

#
0041 # the client’s HELO name was wrong

ACL_HELO = acl_c1
0043 #

We are too busy
0045 ACL_BUSY = acl_c2

0047 # standard callout timeouts
#

0049 CALLTIME = 4m,maxwait=4m,connect=30s

0051 # check local port is 25
#

0053 PORT25 = ${if ={25}{$interface_port} }

0055 # Map a Hermes user to their Cyrus store. If the username is invalid,
return an empty string which causes the routers to decline. Otherwise

0057 # return the name of the user’s Cyrus message store.
#

0059 HERMES_CYRUS = ${lookup {$local_part} cdb {USERS/hermes_cancelled.cdb} \
{} {${lookup {$local_part} cdb {USERS/cyrus.cdb} }} }

0061

Domain and host lists.
0063

List of domains handled on PPSW itself
0065 #

This list includes ppsw.cam.ac.uk which is $qualify_domain.
0067 # It is handled in the same way as normal managed mail domains.

#
0069 # This list also includes the special domains

cam.ac.uk
0071 # hermes.cam.ac.uk

lists.cam.ac.uk
0073 # whose special-case aliases are handled as managed mail domains but

which have a lot of additional addresses routed by other means.
0075 #

domainlist local_domains = \
0077 cdb;DOMAINS/domainlist.cdb :\

cdb;DOMAINS/longshort.cdb
0079

List of domains that PPSW will relay to
0081 #

-21-

domainlist relay_domains = \
0083 cdb;DB/special_routes.cdb :\

partial-cdb;DB/relay_domains.cdb
0085

Lists of all host names which might refer to us.
0087 # ppsw.cam.ac.uk aka $qualify_domain is not included.

#
0089 domainlist our_names = \

cdb;DB/ppswnames.cdb
0091

Special-case domains for handling postmaster email,
0093 # including domain literals [IP addresses].

#
0095 domainlist postmaster_domains = \

+our_names :\
0097 @[]

0099 # List of all domains known to PPSW,
including the local host to make automated postmaster contact possible

0101 #
domainlist our_domains = \

0103 +local_domains :\
+relay_domains :\

0105 +postmaster_domains

0107 # Local parts which should be present in all domains
and which should not be filtered.

0109 #
localpartlist postmasterish = \

0111 postmaster :\
abuse

0113

We are prepared to relay outgoing email from these hosts,
0115 # and we give them favourable MX service.

#
0117 hostlist relay_hosts = \

TABLES/cudn_nets
0119

We will not deliver email to these hosts, and will reject email with
0121 # an envelope-from domain that resolves to one of these hosts.

#
0123 hostlist bad_hosts = \

TABLES/bad_nets :\
0125 net-cdb;DB/badtlds.cdb

0127 ##
Configuration options.

0129 ##
See Chapter 14 of the Exim specification for the categories.

0131 ##

0133 ## Exim parameters

0135 # to facilitate moving the queue from one machine to another using tar
#

0137 localhost_number = ${substr_5_1:$primary_hostname}

0139 # special spool handling for MailScanner
SPOOL = /spool/exim

0141 spool_directory = SPOOL
split_spool_directory = true

0143

Privileged users
0145

deliver_drop_privilege = true
0147 never_users = root

trusted_groups = exim
0149

Logging
0151

log to the same place regardless of spool directory
0153 log_file_path = syslog:/spool/exim/log/%slog

process_log_path = /spool/exim/exim-process.info
0155 syslog_facility = local5

0157 # sensible timestamp handling
log_timezone = true

0159 syslog_timestamp = false

0161 # performance and content sanity
message_logs = false

0163 print_topbitchars = true
syslog_duplication = false

-22-

0165

adjust logging detail: don’t log no-ops; log interface information
0167 # so we can tell the difference between ppsw and smtp.hermes; message

reception confirmation (often includes message-ID); more address
0169 # information on each line to reduce the need for exigrep and make the

delays caused by MailScanner less of a readability problem.
0171 .ifdef DEBUG

log_selector = +all
0173 .else

log_selector = -retry_defer -skip_delivery -host_lookup_failed \
0175 +incoming_interface +incoming_port +smtp_confirmation \

+sender_on_delivery +return_path_on_delivery +delivery_size \
0177 +received_recipients +all_parents +address_rewrite \

+tls_certificate_verified +tls_peerdn \
0179 +smtp_protocol_error +smtp_syntax_error \

+deliver_time +queue_time \
0181 -lost_incoming_connection

.endif
0183

Resource control
0185

These protections need to take into account MailScanner’s need to do
0187 # MIME explosion.

0189 check_spool_inodes = 1000
check_spool_space = 1000M

0191

ppsw has a generous message size limit, Hermes less so --
0193 # see also the cyrus LMTP limit and the Exim client limit

message_size_limit = ${extract {msgsizelim}{PARAM} {$value} {100M} }
0195

Note that there are seven concurrent MailScanner processes, and that
0197 # (for SMTP input) we queue_only anyway, so the queue_only_load helpls

mostly with mailing list messages.
0199

smtp_accept_max_per_host = 10
0201

deliver_queue_load_max = 20.00
0203 queue_only_load = 10.00

queue_run_max = 20
0205 smtp_accept_max = 400

smtp_accept_reserve = 20
0207 smtp_load_reserve = 15.00

smtp_reserve_hosts = +relay_hosts
0209

Policy controls
0211

The default ACL name is based on the default NAME of localhost.
0213

acl_smtp_connect = acl_conn_${extract {acl}{PARAM} {$value} {local} }
0215 acl_smtp_helo = acl_helo_${extract {acl}{PARAM} {$value} {local} }

acl_smtp_rcpt = acl_rcpt_${extract {acl}{PARAM} {$value} {local} }
0217 acl_smtp_data = acl_data_${extract {acl}{PARAM} {$value} {local} }

0219 acl_smtp_vrfy = accept

0221 ## TLS

0223 # server-side TLS settings
tls_advertise_hosts = ${if exists{CERTS/server/NAME} {*} {} }

0225 tls_certificate = CERTS/server/NAME
tls_dhparam = CERTS/dhparam

0227 tls_on_connect_ports = 465

0229 # Eudora/Outlook bug: if we ask it for a client certificate,
it bails out instead of declining gracefully.

0231 # For more info see the interoperability section of
http://www.sendmail.org/˜ca/email/starttls.html

0233 # This makes client TLS authentication hard to support :-(
#

0235 # We’ll have to think more about the interaction with AUTH
advertisement too, since it’s currently keyed on the use of

0237 # TLS (rather than the use of the submission service) whereas
verify = certificate is more of an smarthost thing.

0239 #
#tls_try_verify_hosts = *

0241 #tls_verify_certificates= CERTS/client

0243 ## Incoming SMTP

0245 # see also tls_on_connect_ports above
daemon_smtp_ports = 25 : 465 : 587

0247

-23-

optionally attempt to confuse ratware
0249 smtp_banner = \

FULL_HOSTINFO ESMTP Exim $version_number+ppsw+$compile_number $tod_full\
0251 ${if match{PARAM}{acl=mx} {${run {/usr/bin/fortune -s} {\n$value} }} }

0253 # Make ESMTP PIPELINING available in all cases except when in submission mode.
This is an attempt to make the error handling of Outlook better, so that it

0255 # reports the response to RCPT instead of the response to DATA when a message
is rejected. We also turn off synchronization checks to allow for crapware

0257 # that tries to pipeline anyway.
#

0259 pipelining_advertise_hosts = ${if match{PARAM}{acl=submit} {:} {*} }

0261 # a bit of good cop / bad cop with helo
helo_allow_chars = "_"

0263 helo_try_verify_hosts = *

0265 # reverse DNS information is useful
helo_lookup_domains = *

0267 host_lookup = *

0269 # ident lookups are not and cause firewall problems.
rfc1413_hosts = :

0271 rfc1413_query_timeout = 0s

0273 smtp_return_error_details

0275 ## Message processing

0277 # only for postmaster
allow_domain_literals

0279

never send email to another ppsw machine
0281 hosts_treat_as_local = +our_names : $qualify_domain

0283 # email domain on locally-generated messages
qualify_domain = ppsw.cam.ac.uk

0285 remote_sort_domains = *.cam.ac.uk : *.ac.uk : *.uk

0287 # tweaked so that it is clear which way the message arrived
for reference, the default is:

0289 #
received_header_text = Received: \

0291 # ${if def:sender_rcvhost {from $sender_rcvhost\n\t} \
{${if def:sender_ident {from $sender_ident } }\

0293 # ${if def:sender_helo_name {(helo=$sender_helo_name)\n\t} }} }\
by $primary_hostname \

0295 # ${if def:received_protocol {with $received_protocol} } \
${if def:tls_cipher {($tls_cipher)\n\t} }\

0297 # (Exim $version_number)\n\t\
id $message_id\

0299 # ${if def:received_for {\n\tfor $received_for} }
#

0301 received_header_text = Received: \
from ${if def:sender_rcvhost {$sender_rcvhost\n\t} \

0303 {${if def:sender_ident {$sender_ident } {localhost } }\
${if def:sender_helo_name {(helo=$sender_helo_name) } }} }\

0305 by FULL_HOSTINFO\n\t\
${if def:received_protocol {with $received_protocol } }\

0307 ${if def:sender_host_authenticated \
{($sender_host_authenticated:$authenticated_id) } }\

0309 ${if def:tls_cipher {($tls_cipher)\n\t} }\
id $message_id (Exim $version_number)\

0311 ${if def:received_for { for $received_for} }\n\t\
(return-path <$sender_address>)

0313

Frozen, bounce, and warning messages
0315

bounce_return_body
0317 bounce_return_size_limit = 10K

errors_reply_to = postmaster@cam.ac.uk
0319

single warning after 24h (30d will never be reached)
0321 delay_warning = 24h:30d

0323 ignore_bounce_errors_after = 24h
auto_thaw = 8h

0325

##
0327 # ACL CONFIGURATION #

##
0329

begin acl

-24-

0331

##
0333 #

ACLs for messages sent via localhost
0335 #

0337 acl_conn_local:
accept

0339

acl_helo_local:
0341 accept

0343 acl_rcpt_local:

0345 # Be secure in case of config cock-up.

0347 require
message = No SMTP service for unauthorized users

0349 hosts = : @[] :

0351 # Check all envelope addresses.

0353 require
verify = sender

0355 verify = recipient/callout=use_sender,defer_ok
acl = aux_verify_sender

0357

accept
0359

end of acl_rcpt_local
0361

acl_data_local:
0363 accept

0365 ##
#

0367 # ACLs for the smarthost service
#

0369

acl_conn_smart:
0371 accept

0373 acl_helo_smart:
accept

0375

acl_rcpt_smart:
0377

This service is only available on port 25.
0379

require
0381 message = No SMTP service for unauthorized users

condition = PORT25
0383

Make it easy to get help.
0385

accept
0387 domains = +our_domains

local_parts = +postmasterish
0389

Accept email from machines we should be nice to without question.
0391

accept
0393 condition = ${extract {benice}{SENDER_PARAM} }

0395 # The sender must be allowed to relay through us,
or the recipient must be in the smarthost domain.

0397 # The latter is so that the smarthost can be its own MX,
to avoid confusion from clients that use the MX instead

0399 # of the A record to route outgoing email.

0401 deny
message = No SMTP service for unauthorized users

0403 ! hosts = +relay_hosts
! domains = NAME

0405

deny
0407 ! hosts = +relay_hosts

domains = NAME
0409 ! verify = recipient/callout=use_sender,defer_ok

0411 # Set up submission mode, in case we accept the message.
We have to fix up partly-formed messages to support

0413 # certain clients, but since this service may be relaying

-25-

messages we leave the Sender: header alone.
0415

require
0417 control = submission/sender_retain

0419 # Require valid recipient addresses on bounce messages.

0421 accept
senders = :

0423 endpass
verify = recipient/callout=CALLTIME

0425

Do return address verification compatible with the mx service.
0427

require
0429 verify = sender

acl = aux_verify_sender
0431

accept
0433

end of acl_rcpt_smart
0435

acl_data_smart:
0437 accept

0439 ##
#

0441 # ACLs for the message submission service
#

0443

acl_conn_submit:
0445

Turn off synchronization checks, in order to be more forgiving to
0447 # incompetent SMTP implementations like Outlook, especially when ESMTP

PIPELINING is turned off. See pipelining_advertise_hosts above.
0449

require
0451 control = no_enforce_sync

0453 accept

0455 # end of acl_conn_submit

0457 acl_helo_submit:
accept

0459

acl_rcpt_submit:
0461

Make it easy to get help.
0463

accept
0465 domains = +our_domains

local_parts = +postmasterish
0467

The sender must be either allowed to relay or authenticated.
0469

deny
0471 message = No SMTP service for unauthorized users

! hosts = +relay_hosts
0473 ! authenticated = *

0475 # Set up submission mode, in case we accept the message.

0477 require
control = submission/domain=${extract {domain}{PARAM} \

0479 {$value} {$qualify_domain} }

0481 # Require valid recipient addresses on bounce messages.

0483 accept
senders = :

0485 endpass
verify = recipient/callout=CALLTIME

0487

Do return address verification compatible with the mx service.
0489

require
0491 verify = sender

acl = aux_verify_sender
0493

accept
0495

end of acl_rcpt_submit

-26-

0497

acl_data_submit:
0499 accept

0501 ##
#

0503 # ACLs for messages from the public Internet
#

0505

The delays at the start of the SMTP conversation are to help Exim’s
0507 # synchronization checks catch pump-and-dump spamware and viruses.

Compare and contrast acl_conn_submit above.
0509

acl_conn_mx:
0511

Be nice to friendly machines.
0513

accept
0515 hosts = +relay_hosts

0517 # Assume we won’t have to delay.

0519 warn
set ACL_DELAY = 0s

0521

We delay if the sender is blacklisted.
0523

warn
0525 dnslists = list.dsbl.org : \

multihop.dsbl.org : \
0527 rbl-plus.mail-abuse.ja.net : \

combined.njabl.org : \
0529 relays.ordb.org : \

dnsbl.sorbs.net : \
0531 sbl-xbl.spamhaus.org

set ACL_DELAY = 5s
0533

We delay if the sender has bad DNS.
0535

warn
0537 ! verify = reverse_host_lookup

set ACL_DELAY = 5s
0539

Do whatever delay we worked out.
0541

accept
0543 delay = $ACL_DELAY

0545 # end of acl_conn_mx

0547 acl_helo_mx:

0549 # Be nice to friendly machines.

0551 accept
hosts = +relay_hosts

0553

We delay if the sender says the wrong hello domain.
0555

warn
0557 ! verify = helo

set ACL_DELAY = 5s
0559

Do whatever delay we worked out.
0561

accept
0563 delay = $ACL_DELAY

0565 # end of acl_helo_mx

0567 acl_rcpt_mx:

0569 # This service is only available on port 25.

0571 require
message = No SMTP service for unauthorized users

0573 condition = PORT25

0575 # Make it easy to get help

0577 accept
domains = +our_domains

0579 local_parts = +postmasterish

-27-

0581 # We accept email only for domains that we know about.
This check is cheap so we do it early to save time.

0583

require
0585 message = Relaying is not permitted

domains = +our_domains
0587

Do some anti-spam checking for non-friendly machines.
0589

deny
0591 ! hosts = +relay_hosts

! acl = aux_check_spam
0593

Do cheap sender domain verification to avoid further work.
0595

require
0597 verify = sender

0599 # All recipient addresses must be valid, more or less.

0601 require
message = ${acl_verify_message}\n\

0603 See http://www.cam.ac.uk/cs/email/bounce.html
verify = recipient/callout=use_sender,defer_ok

0605

Do more thorough sender address checks. We do this after verifying the
0607 # recipient address to reduce the number of sender callouts.

0609 require
acl = aux_verify_sender

0611

Don’t accept email if we are too busy. We keep this check at the end
0613 # of the ACLs and ensure we do it only once because it can be expensive.

0615 defer
message = Sorry, too busy. Try again later.

0617 condition = ${if or{{ eq{$ACL_BUSY}{yes} } \
{ <{300}{${run {/opt/exim/sbin/exim_incount} }} }} }

0619 set ACL_BUSY = yes

0621 # Every check has been passed.

0623 accept

0625 # end of acl_rcpt_mx

0627 acl_data_mx:
accept

0629

##
0631 #

Auxiliary ACLs called by the others
0633 #

0635 aux_verify_sender:

0637 # Only do sender callouts if the sender is not known to be incompetent
according to any of the preliminary ACL conditions. We assume that

0639 # the caller has already required verify = sender.

0641 accept
condition = \

0643 ${lookup {${lc:$sender_address_domain}} partial-cdb {DB/nocallout.cdb} \
{yes} {${lookup {${lc:$sender_address}} cdb {DB/nocallout.cdb} \

0645 {yes} {no} }} }

0647 accept
dnslists = dsn.rfc-ignorant.org/$sender_address_domain

0649

require
0651 verify = sender/callout=CALLTIME,defer_ok

0653 accept

0655 # end of aux_verify_sender

0657 aux_check_spam:

0659 # Check for ratware HELO signatures. We don’t use the full strictness of
verify=helo; if it fails we only check for a few choice stupidities.

0661

deny

-28-

0663 message = Please use your name when saying HELO (not $sender_helo_name)
! verify = helo

0665 condition = ${if or{{ eq{$ACL_HELO}{bad} } \
{ isip{$sender_helo_name} } \

0667 { eq{$sender_helo_name}{$local_part} } \
{ match{$sender_helo_name}{\N[.][.]|.{55}\N} } \

0669 { match_domain{$sender_helo_name}{+our_domains} }} }
set ACL_HELO = bad

0671

Look up in a few choice blacklists.
0673

deny
0675 message = ${sender_host_address} is listed at ${dnslist_domain}; \

See ${dnslist_text}
0677 dnslists = sbl-xbl.spamhaus.org

0679 deny
message = ${sender_host_address} is listed at ${dnslist_domain}; \

0681 See http://mail-abuse.com/cgi-bin/lookup?${sender_host_address}
dnslists = rbl-plus.mail-abuse.ja.net

0683

deny
0685 message = ${sender_address_domain} is listed at ${dnslist_domain}; \

${dnslist_text}
0687 dnslists = nomail.rhsbl.sorbs.net/$sender_address_domain

0689 # It has passed the tests.

0691 accept

0693 # end of aux_check_spam

0695 ##
AUTHENTICATION CONFIGURATION

0697 ##

0699 # Note that although the authenticators aren’t explicitly restricted
to the submission service, they are only used in that case because

0701 # only the submission service has a TLS certificate, and the MUA
server only sends messages via the submission service.

0703

begin authenticators
0705

We could be vulnerable to password stealing by spammers, so it’s
0707 # important that the authentication mechanisms are reasonably secure.

We protect passwords from snooping by requiring TLS, and the
0709 # password-changing program checks for basic password security.

TLS is only advertised if we have a certificate available, and we
0711 # only have certificates for the message submission service.

0713 LOGIN:
driver = plaintext

0715 server_set_id = $1
server_prompts = <| Username: | Password:

0717 server_condition = \
${if crypteq{$2}{${lookup {$1} cdb {USERS/passwd.cdb} }} }

0719 server_advertise_condition = ${if !eq{}{$tls_cipher} }

0721 PLAIN:
driver = plaintext

0723 server_set_id = $2
server_prompts = :

0725 server_condition = \
${if crypteq{$3}{${lookup {$2} cdb {USERS/passwd.cdb} }} }

0727 server_advertise_condition = ${if !eq{}{$tls_cipher} }

0729 # This authenticator is used to communicate authentication from the
central MUA server to us for bounce address tagging. EXTERNAL is a

0731 # standard SASL mechanism that uses external information to
authenticate the stated username; in this case the external

0733 # information is that we trust the client, i.e. the MUA server.
The mechanism is only advertised to the MUA server.

0735

EXTERNAL:
0737 driver = plaintext

server_set_id = $1
0739 server_prompts = :

server_condition = yes
0741 server_advertise_condition = ${extract {mua}{SENDER_PARAM} }

0743 ##
REWRITE CONFIGURATION

0745 ##

-29-

0747 begin rewrite

0749 # This is partly handled by the widen_domains in the lookuphost
router, but that doesn’t handle the envelope return path and

0751 # other addresses in the headers.

0753 *@cam $1@cam.ac.uk

0755 # Continue to support broken Hermes user configurations.

0757 *@*.hermes.cam.ac.uk $1@hermes.cam.ac.uk hF

0759 ##
ROUTERS CONFIGURATION

0761 ##

0763 begin routers

0765 # A special case for postmaster email directed to the local host, to
allow automated systems to contact postmaster. Although email directed

0767 # to specific hosts is in general not kosher and against local policy,
the importance of ppsw means that it’s probably best to make it easy

0769 # to contact us without any knowledge of email in Cambridge.

0771 postmaster:
driver = redirect

0773 domains = +postmaster_domains
local_parts = +postmasterish

0775 data = postmaster@${qualify_domain}

0777 # Produce a nice error message. Without this router the lookuphost router
will say "Invalid domain part in email address" which isn’t correct.

0779

postmaster_error:
0781 driver = redirect

domains = +postmaster_domains
0783 data = :fail: \

"${local_part}@${domain}" is not a known user on this system.
0785 allow_fail

0787 ##
Remote domains.

0789 ##

0791 # List of special local routes that override MX information.
If the lookup fails the router declines so the address is

0793 # handled by the lookuphost router below.

0795 special_routes:
driver = manualroute

0797 domains = !+local_domains
host_find_failed = defer

0799 route_data = ${lookup {$domain} cdb {DB/special_routes.cdb} }
same_domain_copy_routing

0801 transport = smtp

0803 # This router routes to remote hosts over SMTP using a DNS lookup.
We refuse to deliver email to hosts in Cambridge unless they are

0805 # known email servers, i.e. they have MX records.

0807 lookuphost:
driver = dnslookup

0809 domains = !+local_domains
ignore_target_hosts = +bad_hosts

0811 mx_domains = *.cam.ac.uk
widen_domains = cam.ac.uk : ac.uk

0813 same_domain_copy_routing
no_more

0815 cannot_route_message = Invalid domain part in email address
transport = smtp

0817

##
0819 ## hermes.cam.ac.uk

##
0821

Verify Hermes addresses that are destined for the Cyrus messages stores
0823 # in a separate router in order to avoid callouts. The HERMES_CYRUS mapping

either returns a Cyrus hostname (equivalent to true) or an empty string
0825 # (equivalent to false), in which case this router declines and the address

falls through to the managed mail domain routers for special-case and
0827 # unknown addresses.

-30-

0829 hermes_verify:
driver = accept

0831 local_part_suffix = +*
local_part_suffix_optional

0833 verify_only
domains = hermes.cam.ac.uk

0835 condition = HERMES_CYRUS

0837 # Deliver most Hermes addresses to the appropriate Cyrus store.
The HERMES_CYRUS mapping either returns a Cyrus hostname, suitable for

0839 # use in the route_data, or an empty string, which causes this router to
decline and the address falls through as before.

0841

hermes_lmtp:
0843 driver = manualroute

local_part_suffix = +*
0845 local_part_suffix_optional

no_verify
0847 domains = hermes.cam.ac.uk

host_find_failed = defer
0849 route_data = HERMES_CYRUS

retry_use_local_part
0851 transport = ${if ={0}{$body_zerocount} \

{hermes_lmtp} {hermes_lmtp_filter} }
0853

##
0855 ## cam.ac.uk

##
0857

A big special-case extension to the managed mail domain system.
0859 # As for hermes.cam.ac.uk, we fall through to the routers below

for special-case and unknown addresses.
0861

cam_aliases:
0863 driver = redirect

domains = cam.ac.uk
0865 data = ${lookup {$local_part} cdb {USERS/cam_aliases.cdb} }

forbid_blackhole
0867 forbid_file

forbid_include
0869 forbid_pipe

check_ancestor
0871 retry_use_local_part

0873 ##
DOMAINS

0875 ##

0877 # Redirect long form addresses to their short form equivalents.

0879 domain_longshort:
driver = redirect

0881 domains = +local_domains
data = ${lookup {$domain} cdb {DOMAINS/longshort.cdb} \

0883 {${local_part}@${value}} fail }
forbid_blackhole

0885 forbid_file
forbid_include

0887 forbid_pipe
check_ancestor

0889 retry_use_local_part

0891 # This includes special-case local parts in cam.ac.uk, hermes.cam.ac.uk,
and lists.cam.ac.uk, and all addresses @ppsw.cam.ac.uk

0893

domain_aliases:
0895 driver = redirect

domains = +local_domains
0897 data = ${lookup {$local_part} cdb {DOMAINS/db/${domain}.cdb} }

forbid_blackhole
0899 forbid_file

forbid_include
0901 forbid_pipe

check_ancestor
0903 retry_use_local_part

0905 # Ensure postmaster@ always works.

0907 domain_postmaster:
driver = redirect

0909 domains = +local_domains
local_parts = +postmasterish

0911 file = DOMAINS/managers/${domain}

-31-

forbid_blackhole
0913 forbid_file

forbid_include
0915 forbid_pipe

check_ancestor
0917 retry_use_local_part

errors_to = postmaster@ppsw.cam.ac.uk
0919

This router produces a nice error message for unknown users in any
0921 # local domain other than lists.cam.ac.uk.

0923 domain_error:
driver = redirect

0925 domains = !lists.cam.ac.uk : +local_domains
data = :fail: \

0927 "${local_part}@${domain}" is not a known user on this system.
allow_fail

0929

##
0931 ## lists.cam.ac.uk

##
0933

This router’s condition requires that the message is not
0935 # submitted over the network.

0937 lists_outgoing:
driver = redirect

0939 local_part_suffix = -outgoing
domains = lists.cam.ac.uk

0941 condition = ${if eq{}{$sender_host_address} }
file = LISTS/members/$local_part

0943 forbid_blackhole
forbid_file

0945 forbid_include
forbid_pipe

0947 check_ancestor
one_time

0949 retry_use_local_part
errors_to = ${local_part}-request@lists.cam.ac.uk

0951

This router’s condition requires that moderators file
0953 # is non-zero in size.

0955 lists_moderators:
driver = redirect

0957 local_part_suffix = -moderators
domains = lists.cam.ac.uk

0959 require_files = LISTS/moderators/$local_part
condition = ${extract {size} \

0961 {${stat:LISTS/moderators/$local_part}} }
file = LISTS/moderators/$local_part

0963 forbid_blackhole
forbid_file

0965 forbid_include
forbid_pipe

0967 check_ancestor
one_time

0969 retry_use_local_part
errors_to = ${local_part}-managers@lists.cam.ac.uk

0971

lists_no_moderators:
0973 driver = redirect

local_part_suffix = -moderators
0975 domains = lists.cam.ac.uk

data = ${local_part}-managers@lists.cam.ac.uk
0977 check_ancestor

0979 lists_owner:
driver = redirect

0981 local_part_prefix = owner-
domains = lists.cam.ac.uk

0983 data = ${local_part}-managers@lists.cam.ac.uk
check_ancestor

0985

lists_request:
0987 driver = redirect

local_part_suffix = -request
0989 domains = lists.cam.ac.uk

data = ${local_part}-managers@lists.cam.ac.uk
0991 check_ancestor

0993 lists_managers:
driver = redirect

-32-

0995 local_part_suffix = -managers
domains = lists.cam.ac.uk

0997 file = LISTS/managers/$local_part
forbid_blackhole

0999 forbid_file
forbid_include

1001 forbid_pipe
check_ancestor

1003 one_time
retry_use_local_part

1005 errors_to = postmaster@lists.cam.ac.uk

1007 # Ensure that a list’s bounce address will verify
before accepting messages to it.

1009

lists_verify:
1011 driver = redirect

verify_only
1013 domains = lists.cam.ac.uk

require_files = LISTS/members/$local_part
1015 data = ${local_part}-managers@lists.cam.ac.uk

check_ancestor
1017

Vanilla list explosion for anything which doesn’t match prefix or suffix
1019

lists_process:
1021 driver = accept

domains = lists.cam.ac.uk
1023 require_files = LISTS/members/$local_part

retry_use_local_part
1025 transport = list_pipe

1027 lists_error:
driver = redirect

1029 domains = lists.cam.ac.uk
data = :fail: \

1031 "${local_part}" is not a list that is managed on this system.
allow_fail

1033

##
1035 # TRANSPORTS CONFIGURATION #

##
1037

begin transports
1039

This transport is used for delivering messages over SMTP connections.
1041 # We do not use TLS to send email.

1043 smtp:
driver = smtp

1045 hosts_randomize
hosts_avoid_tls = *

1047

This transport is used when delivering messages to Hermes by LMTP
1049 # The target machines do not appear in the DNS, hence gethostbyname.

(actually appears to be redundant when parent router is manualroute
1051 # rather than accept, but useful as documentation none the less.)

We keep any local_part_suffix that was recognised by the router.
1053

hermes_lmtp:
1055 driver = smtp

rcpt_include_affixes = true
1057 gethostbyname = true

protocol = lmtp
1059

This variant of the hermes_lmtp transport strips out any nul bytes in order
1061 # to avoid triggering Cyrus’s strict checking. We only use it when necessary

for efficiency reasons.
1063

hermes_lmtp_filter:
1065 driver = smtp

rcpt_include_affixes = true
1067 gethostbyname = true

transport_filter = /usr/bin/tr -d \\000
1069 protocol = lmtp

1071 # Mailing list exploder process

1073 list_pipe:
driver = pipe

1075 command = /opt/exim/sbin/explode_list
message_prefix = ""

1077 message_suffix = ""

-33-

return_fail_output
1079

##
1081 # RETRY CONFIGURATION #

##
1083

begin retry
1085

Large time out for local mail servers so that problems can be fixed.
1087 # This also deals with quota problems on the Hermes LMTP message store.

We have a short time-out for non-local addresses that get routed via
1089 # an A record (because they have no MX) because these are usually the

result of fat-fingering.
1091

Address Error Retries
1093 # ------- ----- -------

1095 *@+our_domains * F,2h,15m; F,8h,30m; F,7d,60m; F,14d,2h

1097 *@* refused_A F,2h,15m; G,16h,30m,1.5
@ timeout_connect_A F,2h,15m; G,16h,30m,1.5

1099

@ * F,2h,15m; G,16h,30m,1.5; F,5d,8h
1101

End of Exim 4 configuration

9.2. Exim configuration on hermes
0001 # $Cambridge: hermes/conf/exim/etc/etc.hermes/configure,v 1.23 2004/11/23 14:00:01 fanf2 Exp $

0003 # This configuration relies as much as possible on the message
submission server to do the clever stuff, including address

0005 # verification, SMTP error text, message fix-ups, and bounce address
tagging. We give it a bit of help by passing across the user’s

0007 # authenticated identity, if it’s available.

0009 ##
MAIN CONFIGURATION SETTINGS

0011 ##

0013 qualify_domain = hermes.cam.ac.uk

0015 ## Privileged users

0017 deliver_drop_privilege = true
never_users = root

0019 trusted_users = prayer

0021 ## Resource control

0023 # see also the cyrus LMTP limit and the smtp.hermes limit
#

0025 message_size_limit = 25M

0027 ## Policy controls

0029 acl_smtp_rcpt = accept hosts = : @[] :

0031 # see discussion of authentication below
rfc1413_hosts = :

0033 rfc1413_query_timeout = 0s

0035 ## Frozen, bounce, and warning messages

0037 auto_thaw = 24h
bounce_return_body

0039 bounce_return_size_limit = 10K
errors_reply_to = postmaster@cam.ac.uk

0041

Logging
0043

log_timezone = true
0045 message_logs = false

print_topbitchars = true
0047

.ifdef DEBUG
0049 log_selector = +all

.else
0051 log_selector = -retry_defer -skip_delivery -host_lookup_failed \

+smtp_confirmation +delivery_size \
0053 +sender_on_delivery +return_path_on_delivery \

+received_recipients +all_parents +address_rewrite \

-34-

0055 +deliver_time +queue_time \
+smtp_protocol_error +smtp_syntax_error

0057 .endif

0059 # tweaked for consistency with ppsw
#

0061 received_header_text = Received: \
from ${if def:sender_rcvhost {$sender_rcvhost\n\t} \

0063 {${if def:sender_ident {$sender_ident } {localhost } }\
${if def:sender_helo_name {(helo=$sender_helo_name) } }} }\

0065 by $primary_hostname ${if def:interface_address \
{(hermes.cam.ac.uk [$interface_address]:$interface_port)} \

0067 {(hermes.cam.ac.uk)} }\n\t\
${if def:received_protocol {with $received_protocol } }\

0069 ${if eq{prayer}{$sender_ident} {(PRAYER:$sender_address_local_part) } }\
id $message_id (Exim $version_number)\

0071 ${if def:received_for { for $received_for} }\n\t\
(return-path <$sender_address>)

0073

##
0075 # AUTHENTICATION CONFIGURATION #

##
0077

begin authenticators
0079

This authenticator communicates MUA user authentication to the
0081 # message submission server. If the user submitted the message

via webmail, trust it to pass us the authenticated username.
0083 # If the user wasn’t authenticated, we will not authenticate.

#
0085 # (Note that since prayer is a trusted user submitting a message on

behalf of another user with -f, Exim does not set $authenticated_id
0087 # so we have to use $sender_ident. This is OK so long as we don’t do

ident callbacks and/or don’t accept messages remotely.)
0089

EXTERNAL:
0091 driver = plaintext

client_send = <| ${if eq{prayer}{$sender_ident} \
0093 {$sender_address_local_part} \

{${if def:authenticated_id \
0095 {$authenticated_id} \

fail }} }
0097

##
0099 # ROUTERS CONFIGURATION #

##
0101

begin routers
0103

smtp:
0105 driver = accept

transport = smtp
0107

##
0109 # TRANSPORTS CONFIGURATION #

##
0111

begin transports
0113

We have to limit the number of messages delivered down a connection
0115 # because SMTP authenticates connections not messages, and we are

authenticating on behalf of the message’s sender not for ourself.
0117

smtp:
0119 driver = smtp

hosts = smtp.hermes.cam.ac.uk
0121 hosts_try_auth = smtp.hermes.cam.ac.uk

hosts_randomize
0123 connection_max_messages = 1

0125 ##
RETRY CONFIGURATION

0127 ##

0129 begin retry

0131 * * F,5d,5m

0133 # End of Exim 4 configuration

-35-

9.3. Table of IP address parameters, addrparams
0001 #

The configuration parameters for certain IP addresses.
0003 # Note that the total allocated range for ppsw systems is 129...159.

Hermes machines have ad-hoc allocations. See hermes/doc/misc/ppsw.txt
0005 #

Non-ppsw addresses are listed here to provide especially favourable
0007 # email relay service, to keep queues on ppsw not the other systems.

#
0009 # name the role in which ppsw acts

and name of TLS certificate
0011 # acl suffix to use on acl names

smart - basic smarthost functionality
0013 # submit - RFC 2476 message submission service

mx - border email gateway
0015 # benice always accept email from the machine

domain email domain to use in submit acl
0017 # msgsizelim message_size_limit value

mua if the machine is a trusted MUA server
0019 #

Trusted MUAs can use AUTH EXTERNAL to inform ppsw of the submitter’s
0021 # username so that bounce address tagging can be done correctly.

#
0023 # $Cambridge: hermes/conf/exim/etc/etc.ppsw/tables/addrparams,v 1.4 2005/01/17 15:58:00 fanf2 Exp $

#
0025 # Fixed virtual address.

#
0027 131.111.8.129 name=ppsw.cam.ac.uk acl=smart

#
0029 # Standard service names.

#
0031 131.111.8.130 name=ppsw.cam.ac.uk acl=smart

131.111.8.131 name=ppsw.cam.ac.uk acl=smart
0033 131.111.8.132 name=ppsw.cam.ac.uk acl=smart

131.111.8.133 name=ppsw.cam.ac.uk acl=smart
0035 131.111.8.134 name=ppsw.cam.ac.uk acl=smart

131.111.8.135 name=ppsw.cam.ac.uk acl=smart
0037 131.111.8.136 name=ppsw.cam.ac.uk acl=smart

131.111.8.137 name=ppsw.cam.ac.uk acl=smart
0039 131.111.8.138 name=ppsw.cam.ac.uk acl=smart

131.111.8.139 name=ppsw.cam.ac.uk acl=smart
0041 #

131.111.8.140 name=mx.cam.ac.uk acl=mx
0043 131.111.8.141 name=mx.cam.ac.uk acl=mx

131.111.8.142 name=mx.cam.ac.uk acl=mx
0045 131.111.8.143 name=mx.cam.ac.uk acl=mx

131.111.8.144 name=mx.cam.ac.uk acl=mx
0047 131.111.8.145 name=mx.cam.ac.uk acl=mx

131.111.8.146 name=mx.cam.ac.uk acl=mx
0049 131.111.8.147 name=mx.cam.ac.uk acl=mx

131.111.8.148 name=mx.cam.ac.uk acl=mx
0051 131.111.8.149 name=mx.cam.ac.uk acl=mx

#
0053 131.111.8.150 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M

131.111.8.151 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M
0055 131.111.8.152 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M

131.111.8.153 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M
0057 131.111.8.154 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M

131.111.8.155 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M
0059 131.111.8.156 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M

131.111.8.157 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M
0061 131.111.8.158 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M

131.111.8.159 name=smtp.hermes.cam.ac.uk acl=submit domain=hermes.cam.ac.uk msgsizelim=25M
0063 #

Real and virtual addresses for Hermes
0065 #

131.111.8.51 mua=yes # hermes-1.csi.cam.ac.uk
0067 131.111.8.54 mua=yes # hermes-2.csi.cam.ac.uk

131.111.8.59 mua=yes # hermes-v.csi.cam.ac.uk
0069 131.111.8.66 mua=yes # hermes-w.csi.cam.ac.uk

#
0071 # Other machines to which we should be nice.

#
0073 131.111.8.16 benice=yes # canvas.csi.cam.ac.uk

172.28.13.60 benice=yes # otanes.csi.private.cam.ac.uk
0075 172.28.13.1 benice=yes # cyrus-1.csi.private.cam.ac.uk

172.28.13.2 benice=yes # cyrus-2.csi.private.cam.ac.uk
0077 172.28.13.3 benice=yes # cyrus-3.csi.private.cam.ac.uk

172.28.13.4 benice=yes # cyrus-4.csi.private.cam.ac.uk
0079 172.28.13.5 benice=yes # cyrus-5.csi.private.cam.ac.uk

172.28.13.6 benice=yes # cyrus-6.csi.private.cam.ac.uk
0081 172.28.13.7 benice=yes # cyrus-7.csi.private.cam.ac.uk

-36-

172.28.13.8 benice=yes # cyrus-8.csi.private.cam.ac.uk
0083 172.28.13.9 benice=yes # cyrus-9.csi.private.cam.ac.uk

172.28.13.10 benice=yes # cyrus-10.csi.private.cam.ac.uk
0085 172.28.13.11 benice=yes # cyrus-11.csi.private.cam.ac.uk

172.28.13.12 benice=yes # cyrus-12.csi.private.cam.ac.uk
0087 172.28.13.13 benice=yes # cyrus-13.csi.private.cam.ac.uk

172.28.13.14 benice=yes # cyrus-14.csi.private.cam.ac.uk
0089 172.28.13.15 benice=yes # cyrus-15.csi.private.cam.ac.uk

172.28.13.16 benice=yes # cyrus-16.csi.private.cam.ac.uk
0091 172.28.13.17 benice=yes # cyrus-17.csi.private.cam.ac.uk

#
0093 # EOF

9.4. Table of invalid destination networks, bad_nets
0001 #

Networks to which we will not send email via the lookuphost router.
0003 # Note that this does not include email routed within Cambridge via

the special_routes table, so CUDN-private addresses are listed here.
0005 #

See RFC 3330 for source material. Not all of the networks mentioned
0007 # in it are appropriate for listing here.

#
0009 # $Cambridge: hermes/conf/exim/etc/etc.ppsw/tables/bad_nets,v 1.4 2004/02/16 11:36:58 fanf2 Exp $

#
0011 0.0.0.0/8

10.0.0.0/8
0013 127.0.0.0/8

169.254.0.0/16
0015 172.16.0.0/12

192.0.2.0/24
0017 192.168.0.0/16

198.18.0.0/15
0019 224.0.0.0/3

#
0021 # EOF

9.5. Table of ppswitch host names, ppswnames
0001 #

List of all the possible names of ppsw, for hosts_treat_as_local.
0003 #

Note that ppsw.cam.ac.uk is handled separately
0005 # because it is also a managed mail domain.

#
0007 # $Cambridge: hermes/conf/exim/etc/etc.ppsw/tables/ppswnames,v 1.4 2004/11/15 15:03:25 fanf2 Exp $

#
0009 mx.cam.ac.uk

smtp.hermes.cam.ac.uk
0011 ppsw-v.csi.cam.ac.uk

ppsw-0.csi.cam.ac.uk
0013 ppsw-1.csi.cam.ac.uk

ppsw-2.csi.cam.ac.uk
0015 ppsw-3.csi.cam.ac.uk

ppsw-4.csi.cam.ac.uk
0017 ppsw-5.csi.cam.ac.uk

ppsw-6.csi.cam.ac.uk
0019 ppsw-7.csi.cam.ac.uk

ppsw-8.csi.cam.ac.uk
0021 ppsw-9.csi.cam.ac.uk

ppsw-0h.csi.cam.ac.uk
0023 ppsw-1h.csi.cam.ac.uk

ppsw-2h.csi.cam.ac.uk
0025 ppsw-3h.csi.cam.ac.uk

ppsw-4h.csi.cam.ac.uk
0027 ppsw-5h.csi.cam.ac.uk

ppsw-6h.csi.cam.ac.uk
0029 ppsw-7h.csi.cam.ac.uk

ppsw-8h.csi.cam.ac.uk
0031 ppsw-9h.csi.cam.ac.uk

ppsw-0m.csi.cam.ac.uk
0033 ppsw-1m.csi.cam.ac.uk

ppsw-2m.csi.cam.ac.uk
0035 ppsw-3m.csi.cam.ac.uk

ppsw-4m.csi.cam.ac.uk
0037 ppsw-5m.csi.cam.ac.uk

ppsw-6m.csi.cam.ac.uk
0039 ppsw-7m.csi.cam.ac.uk

ppsw-8m.csi.cam.ac.uk
0041 ppsw-9m.csi.cam.ac.uk

#
0043 # EOF

-37-

9.6. Example entries from other tables

cudn_nets:
This contains the list of address ranges used on the Cambridge University Data Network, including:

131.111.0.0 / 16
129.169.0.0 / 16
128.232.0.0 / 16

domainlist:
This contains the list of managed mail domains, including the four special-case domains listed to the right
of the examples below:

law.cam.ac.uk cam.ac.uk
quns.cam.ac.uk hermes.cam.ac.uk
ucs.cam.ac.uk lists.cam.ac.uk
conferencecambridge.com ppsw.cam.ac.uk

longshort:
This is a mapping from long-form domains to their corresponding short forms, for example:

queens.cam.ac.uk: quns.cam.ac.uk

nocallout:
This contains a list of email addresses and domains, and the domains may be wildcarded. For example:

httpd@host.name.of.web.server
domain.rejecting.all.bounces
*.all.subdomains.broken

relay_domains:
This just contains *.cam.ac.uk and cambridge.org.

special_routes:
This is effectively a manualroute router route_list. It contains entries like:

cl.cam.ac.uk mta.cl.cam.ac.uk bydns
emma.cam.ac.uk mail.emma.cam.ac.uk bydns
srcf.ucam.org student.cusu.cam.ac.uk bydns

References
1. David Carter and Tony Finch, Scaling up Cambridge University’s email service (Feb 2004).

http://www.cus.cam.ac.uk/˜fanf2/hermes/doc/talks/2004-02-ukuug/

2. “Mail to and from Phoenix,” University of Cambridge Computing Service Newsletter, 164 (Mar/Apr
1992). http://www.cam.ac.uk/cs/newsletter/1992/nl164.html#19

3. ISO Development Environment. ftp://ftp.uu.net/networking/osi/isode/

4. “Closure of Phoenix,” University of Cambridge Computing Service Newsletter, 183 (Oct 1995).
http://www.cam.ac.uk/cs/newsletter/1995/nl183/phoenix.html

5. “The Hermes Message Store,” University of Cambridge Computing Service Newsletter, 172 (Oct 1993).
http://www.cam.ac.uk/cs/newsletter/1993/nl172.html#31

6. “New mail list software available,” University of Cambridge Computing Service Newsletter, 178 (Oct
1994). http://www.cam.ac.uk/cs/newsletter/1994/nl178.html#45

7. “Computing Service Mail Addresses,” University of Cambridge Computing Service Newsletter, 171 (Aug
1993). http://www.cam.ac.uk/cs/newsletter/1993/nl171.html#25

8. “New @cam Addresses,” University of Cambridge Computing Service Newsletter, 178 (Oct 1994).
http://www.cam.ac.uk/cs/newsletter/1994/nl178.html#40

9. Greg A. Woods, The Smail Project.
http://www.weird.com/˜woods/projects/smail.html

10. “Managed Mail Domains,” University of Cambridge Computing Service Newsletter, 192 (Jul 1997).
http://www.cam.ac.uk/cs/newsletter/1997/nl192/services.html

-38-

11. “Hermes mailing lists,” University of Cambridge Computing Service Newsletter, 195 (Feb 1998).
http://www.cam.ac.uk/cs/newsletter/1998/nl195/services.html#s5

12. “Spam and virus filtering,” University of Cambridge Computing Service Newsletter, 216 (Apr 2003).
http://www.cam.ac.uk/cs/newsletter/2003/nl216/mail.html#1

13. John C. Klensin (ed), “Simple Mail Transfer Protocol,” RFC 2821 (Apr 2001).
http://www.ietf.org/rfc/rfc2821.txt

14. John G. Myers, “SMTP Service Extension for Authentication,” RFC 2554 (Mar 1999).
http://www.ietf.org/rfc/rfc2554.txt

15. John G. Myers, “Simple Authentication and Security Layer (SASL),” RFC 2222 (Oct 1997).
http://www.ietf.org/rfc/rfc2222.txt

16. Chris Newman, “Using TLS with IMAP, POP3 and ACAP,” RFC 2595 (Jun 1999).
http://www.ietf.org/rfc/rfc2595.txt

17. Paul Hoffman, “SMTP Service Extension for Secure SMTP over Transport Layer Security,” RFC 3207
(Feb 2002). http://www.ietf.org/rfc/rfc3207.txt

18. Randall Gellens and John C. Klensin, “Message Submission,” RFC 2476 (Dec 1998).
http://www.ietf.org/rfc/rfc2476.txt

19. Mail program settings for Hermes, University of Cambridge Computing Service.
http://www.cam.ac.uk/cs/email/muasettings.html

20. Tim Showalter, “Sieve: A Mail Filtering Language,” RFC 3028 (Jan 2001).
http://www.ietf.org/rfc/rfc3028.txt

21. The Spamhaus Project, Should MCI Be Profiting From Knowingly Hosting Spam Gangs? (Feb 2005).
http://www.spamhaus.org/news.lasso?article=158

22. Julian Field, MailScanner. http://www.mailscanner.info/

23. Tomasz Kojm, et al., Clam Anti-Virus. http://www.clamav.net/

24. Network Associates Technology, Inc., McAfee VirusScan Command Line Scanner for Linux.
http://www.networkassociates.com/us/products/mcafee/antivirus/desktop/vs_commandline.htm

25. The Apache SpamAssassin Project. http://spamassassin.apache.org/

26. Peter W. Resnick (ed), “Internet Message Format,” RFC 2822 (Apr 2001).
http://www.ietf.org/rfc/rfc2822.txt

27. Oxford University Computing Services, Oxford Email Addresses.
http://www.oucs.ox.ac.uk/email/oxford/index.xml.ID=body.1_div.3

28. Internet Assigned Numbers Authority, “Special-Use IPv4 Addresses,” RFC 3330 (Sep 2002).
http://www.ietf.org/rfc/rfc3330.txt

29. Internet Corporation For Assigned Names and Numbers, Verisign’s Wildcard Service Deployment.
http://www.icann.org/topics/wildcard-history.html

30. “@cam addresses and the online e-mail directory,” University of Cambridge Computing Service Informa-
tion Sheets, 29 (Oct 2004). http://www.cam.ac.uk/cs/docs/infosheets/is29/

31. John G. Myers, “Local Mail Transfer Protocol,” RFC 2033 (Oct 1996).
http://www.ietf.org/rfc/rfc2033.txt

32. “User-driven mailing lists,” University of Cambridge Computing Service Leaflets, G90 (Sep 2003).
http://www.cam.ac.uk/cs/docs/leaflets/g90/

33. David Madore, A page about quines (Dec 2002).
http://www.eleves.ens.fr:8080/home/madore/computers/quine.html

34. Tony Finch, Protecting against email forgery in Cambridge (Jul 2004).
http://www.cus.cam.ac.uk/˜fanf2/hermes/doc/antiforgery/cam.txt

35. Certified Server Validation. http://mipassoc.org/csv/index.html

36. Free Software Foundation, Mailman, the GNU Mailing List Manager.
http://www.gnu.org/software/mailman/

37. University of Cambridge Computing Service, The Raven web authentication service.
http://www.cam.ac.uk/cs/raven/

38. Tony Finch, A Hermes ‘‘thermal event’’. (Jan 2004).
http://www-uxsup.csx.cam.ac.uk/˜fanf2/hermes/doc/misc/orange-fire/

